
ORIGINAL RESEARCH PAPER

Interactive GPU active contours for segmenting inhomogeneous
objects

Chris G. Willcocks1 • Philip T. G. Jackson1 • Carl J. Nelson1 • Amar V. Nasrulloh1 • Boguslaw Obara1

Received: 13 April 2017 / Accepted: 27 November 2017 / Published online: 26 December 2017
� The Author(s) 2017. This article is an open access publication

Abstract
We present a segmentation software package primarily targeting medical and biological applications, with a high level of

visual feedback and several usability enhancements over existing packages. Specifically, we provide a substantially faster

GPU implementation of the local Gaussian distribution fitting energy model, which can segment inhomogeneous objects

with poorly defined boundaries as often encountered in biomedical images. We also provide interactive brushes to guide

the segmentation process in a semiautomated framework. The speed of our implementation allows us to visualize the active

surface in real time with a built-in ray tracer, where users may halt evolution at any time step to correct implausible

segmentation by painting new blocking regions or new seeds. Quantitative and qualitative validation is presented,

demonstrating the practical efficacy of our interactive elements for a variety of real-world datasets.

Keywords Segmentation � Active contours � Level set methods � GPU � Medical applications � Biological applications

1 Introduction

Image segmentation is a large research field with many

practical applications, including but not limited to:

• Biosciences:

• Cellular, developmental and cancer biology.

• Plant biology, including plant–pathogen

interactions.

• Animal biology, including virus–host interactions

and bacterial infections.

• Microbiology, including food safety.

• Neuroscience, including connectome projects and

developmental neuroscience.

• Medicine:

• Automated differential diagnosis.

• Diagnostic measurements, shape, and volume, of:

• Macular holes in retinal degeneration.

• Aneurysms, clotting and infarction.

• Tumors, neoplasia and dermatological moles.

• MRI segmentation in dementia and

Alzheimer’s.

• Computer-assisted surgery:

• Pre-surgical planning and surgery simulation.

• Guided surgical navigation.

The primary problems with current segmentation approa-

ches are that they are either: (1) too limited, e.g., only able

to segment objects by simple criteria, such as objects with

consistent mean intensity [18, 36], (2) using too much

memory or too slow, taking several hours to segment large

2D or 3D objects [47], (3) lacking in interactivity with the

segmentation process in response to visual feedback [54],

(4) requiring copious training data [22], or (5) difficult to

use, requiring large interfaces, and multiple algorithms

[50].

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s11554-017-0740-1) contains supplementary
material, which is available to authorized users.

& Boguslaw Obara

boguslaw.obara@durham.ac.uk

Chris G. Willcocks

christopher.g.willcocks@durham.ac.uk

Philip T. G. Jackson

p.t.g.jackson@durham.ac.uk

Amar V. Nasrulloh

amar.v.nasrulloh@durham.ac.uk

1 Department of Computer Science, Durham University, South

Road, Durham DH1 3LE, UK

123

Journal of Real-Time Image Processing (2019) 16:2305–2318
https://doi.org/10.1007/s11554-017-0740-1(0123456789().,-volV)(0123456789().,-volV)

https://doi.org/10.1007/s11554-017-0740-1
http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-017-0740-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-017-0740-1&domain=pdf
https://doi.org/10.1007/s11554-017-0740-1

The oldest and most widely cited segmentation

approaches are active contours [20]; these are variational

frameworks which allow users to define an initial open or

closed curve that deforms so as to minimize a energy

functional, outlining or surrounding the object of interest.

While active contours have been realized as fully automatic

approaches without initial contours [25], their original

foundation as an assisted approach is still important today

as it allows users, such as clinicians, to extract precise

measurements from specific objects of interest within a

complex image. However, such interactivity relies on real-

time visual feedback; therefore, they must also be com-

putationally efficient.

Graphics processing units (GPUs) provide energy-effi-

cient parallel computing and enable real-time interactive

segmentation for larger 2D or 3D datasets [10, 43], but

existing GPU segmentation methods currently rely on

simple segmentation criteria restricting their usage and

applications. The popular local Gaussian distribution fitting

(LGDF) energy model [47] is much more powerful and

able to segment a wider variety of general objects. How-

ever, it requires several intermediate processing steps that

must be implemented sequentially, making it challenging

to efficiently implement on graphics hardware. The current

implementation of the LGDF energy model can segment

small 2D images (99 � 120 in 27.37 s), but requires several

hours of processing for larger 2D or 3D images [47]. For a

3D image of size 256 � 256 � 160, this would take 6.6

hours if the implementation were available for 3D, pre-

venting usage in many practical applications.

1.1 Contributions

In our approach, we: (1) significantly increase the perfor-

mance of the LGDF energy model through an optimized

GPU implementation, handling much larger 2D images and

even 3D images at interactive performance, (2) introduce a

novel set of interactive brush functions that are integrated

into the GPU kernels such as to modify and constrain the

evolving level set in real time, (3) provide a ray tracer to

view the segmentation results at each time step, and (4)

expose a simpler and more intuitive parameter space to the

user, with suggested values and ranges. The combination of

these four enhancements greatly improves the practicality

of what is already considered a state-of-the-art level set

method of particular relevance to the biomedical image

processing communities. Our software is shown to be

stable with respect to its input parameters and robust to

noise through a large experiment on synthetic data and is

further evaluated through segmenting a wide variety of

real-world images, such as those shown in Fig. 1.

2 Related work

The field of active contours first gained mainstream

adoption with the ‘active snakes’ model published by [20].

This seminal work proposes iterative evolution of an initial

spline curve, with the evolution being governed by the

minimization of an energy functional, the local minima of

which correspond to curves that fit along prominent edges

in the image. Level set methods (core theory explained in

[30]) model contours implicitly as the zero-crossing of a

scalar field. Originally they were proposed in [31] to model

the evolution of inter-region boundaries in physical simu-

lations. Malladi et al. [26] applied level sets to active

contours, with the evolution of the contour being governed

by its local mean curvature and the intensity gradient

magnitude of the image, in such a way that local curvature

is reduced and the motion of the contour stops as it

approaches an edge. In [5], the authors develop a level set-

based active contour framework in which the energy

functional is based on the Mumford–Shah model, rather

than image edges, which in practice are often faint, blurred,

(a) (b) (c) (d)

Fig. 1 A selection of 3D objects segmented by our software. Our interactive method allows users to efficiently capture specific objects (colored

separately) within the data, such as the teeth in b. Image a is a simulated brain MRI [8], images b, c are CT scans [37], and d shows selective

plane illumination microscopy (SPIM) of zebrafish eye lens cells [17]. a Brain and ventricles. b Dental scan. c Foot bones and tissues.

d Zebrafish cells

2306 Journal of Real-Time Image Processing (2019) 16:2305–2318

123

or broken. The Mumford–Shah energy model [28] is

minimized by an optimal partition of an image into

piecewise smooth segments, and high-quality implemen-

tations exist on the GPU [33]. The global optimum can be

found using a primal-dual algorithm [4] resulting in a

cartoon-like rendering of the original image. Local solu-

tions, such as with a trust-region approach [14], have

applications in interactive segmentation, where local edits

need to be made frequently.

Deep convolutional neural networks are the state of the

art in image segmentation, where millions of parameters of

deeply layered convolutions are learned using backpropa-

gation [22]. These models are capable of learning abstract

features in the data; however, their current reliance on such

large datasets makes them unusable for a number of

applications.

The influential public datasets with ground-truth seg-

mentations (such as BSDS, MSRC, iCoseg, FlickrMFC,

SegTrack) include RGB videos or 2D images such as cars,

chairs, and people. Of these, the interactive approaches

take as input a set of scribbles where objects follow similar

color distributions [53]. Graph cut segmentation is popular

in this field, where Grady [15] and Vineet and Narayanan

[46] propose GPU implementations. For interactive seg-

mentation in the biosciences, we find the main limitations

being (1) the initialization of the foreground–background

scribbles in 3D datasets such as networks and (2) the

opaque intermediate steps of the cutting algorithm making

it difficult to obtain a high level of visual feedback. While

popular and easy to validate, these approaches address a

different problem to grayscale 3D segmentation as with

imaging modalities (such as CT, PET, SPECT, MRI, fMRI,

ultrasound, optical imaging and microscopy) in the bio-

sciences [10]. There is still a need for benchmark medical

datasets with well-defined interactive performance evalu-

ation [51].

Accelerating image segmentation with GPUs is a large

research field with several comprehensive surveys

[10, 34, 41, 43]. The survey by [10] covers a broad range of

algorithms and different imaging modalities, whereas

Smistad et al. [43] focuses more on GPU segmentation

with a detailed discussion on the current GPU architecture.

The GPU level set methods in the literature focus on

limiting the active computational domain to a small region

near the zero-crossing of the level set function, such as the

traditional narrow band algorithm [1]. More recent exten-

sions classify the active region using simple operations on

the spatial and temporal derivatives of the level set func-

tion [36] and then discard unimportant regions through

parallel stream compaction. While limiting the active

computational domain produces excellent performance

with lower memory usage, the current implementations all

use simple speed functions that attract the level set to make

it grow and/or shrink within a fixed intensity range

[18, 23, 36]. In contrast, the LGDF model proposed by [47]

is able to segment much more challenging images, in

which objects exhibit intensity inhomogeneity or even have

the same mean intensity as their background, being dis-

tinguished only by intensity variance. However, to date the

only existing implementation runs on the CPU, likely due

to the sequential dependency of convolutions in the inter-

mediate steps. Further, the LGDF model is derived from

[5] who introduce C1 regularization of the Heaviside and

Dirac functions which are nonzero everywhere, unlike the

C2 regularized Heaviside (proposed in [52]) which is

nonzero only in the vicinity of the contour. C1 regular-

ization restrains the algorithm from converging on local

minima, but precludes traditional narrow band or sparse

field algorithms because it requires the level set to update

at all points on each time step.

GPU active contour methods parallelize the calculation

of the energy forces described in the original snakes paper

[20]. Traditional methods rely on simple intensity gradients

and are prone to converging on local minima; however,

[49] introduced a diffusion of the gradient vectors called

gradient vector flow (GVF) to address this problem. [16]

were one of the first GPU active contour implementations

using GVF, and more recent optimizations in OpenCL

exploit cached texture memory which has spatial locality in

multiple dimensions [42]. The active contour can also be

approximated by a surface mesh, such as in [39] who use

Laplacian smoothing on local neighborhoods in conjunc-

tion with driving mesh vertices with gradient and intensity

forces. However, these approaches still rely on the image

gradient being a reliable indication of object boundaries,

which is not the case in many real-world images [5].

Ever since the original snakes paper, active contours

have gained popularity through being able to interactively

edit the contour, or set up constraints to guide its motion

[20]. Region-based active contour methods provide the

option to initialize with a simple primitive shape, or sketch

a starting region [7]. The more advanced approach by [27]

introduces non-Euclidean radial-basis functions, which are

weighted by the image features and blended to form an

implicit function whose sign can be fixed at user-defined

control points. The tool by [50] provides an interactive

interface with geodesic active contours [3] and region

competition [55]. Region competition favors a well-defined

intensity range, whereas the geodesic approach is better

suited for images with clear edges; by combining both

approaches, [50] can segment a broad range of images, yet

it requires significant tuning and can still fail in complex

images with neither a well-defined intensity range nor clear

edges.

Journal of Real-Time Image Processing (2019) 16:2305–2318 2307

123

There are several GPU approaches that produce seg-

mentation without relying on initialization of a seed region

[25]. Clustering methods join regions of a high-dimen-

sional feature space [13], and superpixel approaches [35]

form clusters that are deliberately over-segmented into

more manageable regions. These approaches are good at

simplifying complex images, yet they do not capture

specific objects. In contrast, active shape and appearance

methods fit a model to the data based on prior knowledge;

however, this inherently makes assumptions of the overall

shape of the objects and fails when these assumptions are

not met.

3 Method

The LGDF model, originally proposed in [47], builds on

existing active contour literature by introducing a new

energy functional based on the local Gaussian distributions

of image intensity. This functional drives a variational

level set approach which is able to segment objects whose

intensity mean and variance are inhomogeneous. Rather

than creating segments whose intensity is as uniform as

possible, this algorithm allows slow changes in intensity

across an object, penalizing only sudden changes within it,

without relying on a gradient based edge detector [5].

The segmentation is represented by a level set function

/ðxÞ. The foreground region is the set of points

fx : /ðxÞ\0g, and the exterior (or background) is

fx : /ðxÞ� 0g. The contour itself (or surface in 3D) is thus

defined implicitly as the zero level set, fx : /ðxÞ ¼ 0g.

Segmentation is achieved by minimizing a global energy

functional:

E ¼ ELGDFðI;/Þ þ lPð/Þ þ mLð/Þ ð1Þ

where l; m[0 are weighting constants, ELGDF is the LGDF

energy term which drives the contour to fit along salient

image edges, P avoids the need to periodically re-initialize

/ to a signed distance function [24], and L penalizes the

contour length to ensure smoothness. The ELGDF term is the

sum of the individual LGDF energies for each pixel x:

ELGDFðI;/; xÞ ¼ �
Z
X
xðy� xÞ logðp1;xðIðyÞÞÞM1ðyÞ dy

�
Z
X
xðy� xÞ logðp2;xðIðyÞÞÞM2ðyÞ dy

ð2Þ

where xðy� xÞ is a Gaussian weighting function centered

on x, p1;x is a Gaussian approximation of the intensity

distribution for the part of the neighborhood of x lying

outside the contour (and inside for p2;x), and M1 equals one

outside the contour, zero inside (vice-versa for M2). This

quantity is smaller when the intensity distributions in the

parts of the neighborhood of x lying outside and inside the

contour are well approximated as Gaussian distributions,

which can only be achieved by deforming the contour so

that it separates regions of different intensity mean and

variance.

The mean and variance parameters for these local

Gaussian distributions are denoted uiðxÞ, riðxÞ where i 2
f1; 2g for regions outside and inside the contour,

respectively:

uiðxÞ ¼
R
xðy� xÞIðyÞMið/ðyÞÞ dyR
xðy� xÞMið/ðyÞÞ dy

ð3Þ

riðxÞ2 ¼
R
xðy� xÞðuiðxÞ � IðyÞÞ2

Mið/ðyÞÞ dyR
xðy� xÞMið/ðyÞÞ dy

ð4Þ

Specifically, they express for each pixel the mean and

variance of neighboring gray values that lie outside and

inside the contour (for pixels whose entire neighborhood

lies on one side of the contour, only one pair of these

values is defined). The size of each pixel’s neighborhood is

determined by the standard deviation of the Gaussian

weighting function, x. This is a user-defined parameter,

denoted r. A larger neighborhood increases the range from

which a pixel may influence the contour. This results in

faster evolution, greater capture range, and a greater ten-

dency to produce segments whose boundaries separate

large regions of different mean intensity.

The internal energy term P penalizes the contour’s

deviation from a signed distance function [24] to ensure

numerical stability [32]:

Pð/Þ ¼
Z
X

1

2
r/ðxÞj j � 1ð Þ2

dx ð5Þ

and L penalizes the contour length to ensure smoothness:

Lð/Þ ¼
Z
X
rHð/ðxÞÞj j dx ð6Þ

where H is the C1 regularized Heaviside function, dis-

cretized to operate on a regular grid, first proposed by [5]:

HðxÞ ¼ 1

2
1 þ 2

p
arctan xð Þ

� �
ð7Þ

The total energy functional (Eq. 1) can be minimized by

applying the calculus of variations [47] yielding the fol-

lowing PDE:

o/
ot

¼ � dð/Þðk1e1 � k2e2Þ þ l r2/� j
� �

þ mdð/Þj

ð8Þ

where d is the regularized Dirac function dðxÞ ¼ H0ðxÞ [5],

k1, k2, m and l are parameters controlling the weight of the

terms, and j is the contour’s local curvature [31]:

2308 Journal of Real-Time Image Processing (2019) 16:2305–2318

123

j ¼ div
r/
r/j j

� �
ð9Þ

and � dð/Þðk1e1 � k2e2Þ is the force due to ELGDF:

eiðxÞ ¼
Z
X
xðy� xÞ logðriðyÞÞ þ

ðuiðyÞ � IðxÞÞ2

2riðyÞ2

" #
dy

ð10Þ

The data fitting term e1ðxÞ quantifies how badly the pixel x

would fit with the outside-contour parts of its neighbors’

neighborhoods. When e1 is high and x does not belong

outside, o/
ot

is made more negative, so / lowers at that point

and the contour grows outwards, swallowing x. The same

applies in reverse for e2.

Due to the smooth form of the C1 regularized Heaviside

(Eq. 7), dð/Þ ¼ H0ð/Þ is nonzero everywhere. This allows

/ some freedom to change at any point in the image, not

just in a narrow band around the contour. This helps pre-

vent convergence on local energy minima [5].

3.1 GPU implementation

The goal of the implementation is to iteratively solve Eq. 8

for /ðx; tÞ and visualize the results at each iteration. This is

done by discretizing / with respect to time and applying

numerical integration: starting with /ðx; t ¼ 0Þ (which is

specified by the user), an update loop computes /ðx; t þ
DtÞ by computing o/

ot
according to Eq. 8 and assuming this

quantity stays constant during the short time step Dt.
Existing GPU level set methods implement their update

rule inside a single kernel function; however, ELGDF is

more challenging as relies on intermediate stages with

neighborhood operations, such as convolutions and

derivatives, whose sequential dependencies must be con-

sidered such as to avoid race conditions.

The update rule in Eq. 8 requires convolutions (Eq. 10)

of intermediate variables that themselves rely on other

convolutions (Eqs. 3–4). The relationships of these vari-

ables are shown in Fig. 2, where an arrow from A to B

indicates that A is required in the computation of B.

Wherever they appear, I denotes the input image and H the

smooth Heaviside function (Eq. 7). All variables of the

form GX represent the n-dimensional Gaussian convolution

of X.

We compute the means and variances (Eqs. 3–4) from

GIH, GH, GI2H, GI and GI2 using the following formulas:

u1 ¼ GIH

GH
r2

1 ¼ GI2H

GH
� u2

1
ð11Þ

u2 ¼ GI � GIH

1 � GH
r2

2 ¼ GI2 � GI2H

1 � GH
� u2

2
ð12Þ

For r2
i we have used the alternative variance formula

Var½X� ¼ E½X2� � E½X�2, and for u2 and r2 we have used

Gr � ð1 � HÞ ¼ 1 � Gr � H in the denominators, where

Gr� denotes convolution with a Gaussian kernel of stan-

dard deviation r. This is not to be confused with r1 and r2,

the local intensity standard deviations outside and inside

the contour. By exploiting these tricks, we are able to

compute Eqs. 11–12 using only three convolutions per

update cycle (since GI and GI2 are constant). To compute

the image force term e1 � e2, we expand the brackets in

Eq. 10 to get:

eiðxÞ ¼
Z
X
xðy� xÞ logðriðyÞÞ þ

uiðyÞ2

2riðyÞ2

" #
dy

� IðxÞ
Z
X
xðy� xÞ uiðyÞ

riðyÞ2
dy

þ IðxÞ2

Z
X
xðy� xÞ 1

2riðyÞ2
dy

ð13Þ

¼ Gr � logðriðyÞÞ þ
uiðyÞ2

2riðyÞ2

" #

� IðxÞ Gr �
uiðyÞ
riðyÞ2

" #
þ IðxÞ2

Gr �
1

2riðyÞ2

" # ð14Þ

To compute the three terms in Eq. 14, we first pre-compute

the operands of the Gaussian convolutions (E0, E1 and E2

in Fig. 2), then convolve them (GE0, GE1 and GE2 in

φ

H I

GI GI2

∇φ
|∇φ|

κ

GH

IH I2H

μ

μ(∇2φ−κ)

ν

GIH GI2H

u1 u2σ2
1 σ2

2

λ

E0 E1 E2

GE0 GE1 GE2

−δ(φ)(e1−e2)

Δt

φΔ

νδκ

Fig. 2 Dependency graph between variables in the update process.

The red variables require neighborhood computations, whereas the

blue variables represent constants. All variables except for the

parameters m, l, k and Dt are spatially varying fields. The green

variables are quantities that are computed ‘on the fly’ and never stored

in a texture

Journal of Real-Time Image Processing (2019) 16:2305–2318 2309

123

Fig. 2), then weight them by 1, I and I2 and sum them. This

results in just six convolutions altogether. Note that e1 and

e2 are not computed separately; the variables E0, E1 and E2

are the three corresponding parts of e1 � e2.

3.2 GPU architecture

The six required Gaussian convolutions require a large

number of buffer reads. However, an n-dimensional

Gaussian filter can be separated into the matrix product of n

vectors allowing us to convolve with n 1D filters instead of

one very large n-dimensional filter. This reduces l2 texture

samples to 2l in 2D or l3 texture samples to 3l in 3D, for a

truncated Gaussian kernel of length l. Therefore, our

overall algorithmic complexity is Oðn � lÞ for an input of

size n.

The buffer reads for the horizontal Gaussian pass are

coalesced, but for the vertical and depth passes the reads

are not coalesced and therefore very slow. This could be

alleviated by transposing the image between convolutions,

making the buffer reads coalesced for vertical and depth

passes. However, transposing the image three times per

convolution is slow, even when this is optimized by using

local/shared memory. In our architecture, we instead make

use of texture memory, which preserves spatial locality

among neighboring pixels in all three dimensions, making

access time for all three passes comparable to coalesced

buffer reads. This allows us to skip the transpositions

altogether and convolve up to four images at once in the

available texture memory channels, yielding faster overall

performance than local/shared memory approaches.

Texture memory buffers must either be read-only or

write-only within a given kernel function; therefore, results

computed from data in a texture buffer must be written to a

different buffer. The memory layout for our architecture

includes kernels for the separable X, Y, and Z Gaussian

passes accordingly, which we show in Fig. 3. This fig-

ure lists our kernels in the order they are called and shows

their inputs and outputs (corresponding to the nodes in

Fig. 2) within the available 4�32-bit channels per GPU

texture buffer. Besides the convolutions, the rest of our

implementation is straightforward; we store the 1D con-

volution filter weights in constant memory and all inter-

mediate values reside in registers.

The three Gaussian convolutions of the image and

Heaviside (GIH, GH, GI2H, Fig. 2) are the result of

neighborhood operations, but are not dependent on each

other. This is also the case with the three Gaussian con-

volutions GE0, GE1, GE2. We therefore create kernels

shown in Fig. 3 to perform each set of three Gaussian

convolutions simultaneously, and two more kernels to

prepare for them (called ‘Prep Conv 1’ to compute H, IH,

I2H, and ‘Prep Conv 2’ to compute E0, E1, E2). The cur-

vature field j (Eq. 9) requires all three (two in 2D) gradient

components to be first stored in texture memory in order to

avoid race conditions, since all differential operations are

computed by central finite differences, a neighborhood

operation. This is why we compute j early on and pass it

through the Gaussian convolution kernels in the conve-

niently available w channel of the texture buffer; comput-

ing j immediately before ‘Update /’ would require an

extra texture buffer since there is only one unused channel

at that point. After updating, we force the partial deriva-

tives of / to be zero at their corresponding image bound-

aries (in the ‘Neumann/Copy’ kernel) to prevent numerical

instability and copy the result back into buffer A for the

next iteration.

3.3 Interactive brushes

There are many applications in the biosciences, computer

vision, medical, and pattern recognition communities

where guidance by human experts is required

[7, 20, 27, 48, 50]. The current interactive GPU level set

methods, such as [36], provide interfaces to (1) initialize /
inside/outside the object, (2) dynamically adjust parame-

ters, and in some cases (3) allow / to be edited (a union

operator on new objects/regions, followed by rerunning of

the algorithm); however, it is difficult to refine evolution

such as to prevent contour leaking or constrain the evolu-

tion. The graph-cuts and radial-basis function approaches

Fig. 3 Memory layout of our GPU kernels for the 3D case. Each row

represents a kernel operating on 4-channel texture objects A, B,

C. The kernels read variables from one or two of the textures (blue)

and write into a single texture (red)

2310 Journal of Real-Time Image Processing (2019) 16:2305–2318

123

[15, 27] allow users to sketch lines or define control points

which are tagged to both the desired object and the unde-

sired regions, but we find the process difficult to refine

where the segmented boundary lies somewhere between

the input locations, where there may not be discernible

image intensity features (see Fig. 4 top-left and in the

accompanying video).

To address these issues, we follow the strategies out-

lined in the survey [29] with similar functions to the

modeling/graphics literature [12]; however, we closely

integrate brush functions with our segmentation kernels

with the goal of editing and constraining / during the

iterative evolution process itself. Specifically, we provide

functions to initialize, append, erase, and constrain (locally

stop evolution of /) after each iteration of the update step

(Eq. 8), and visualize the results after each iteration. Note

that for simplicity we define our functions with circular

(2D) or spherical (3D) regions, but there is nothing to

prevent implementing more bespoke functions, such as

surface pulling [12].

All brush functions are centered at the mouse position p

with radius r and are implemented in the ‘Compose’ kernel

(Fig. 3). We have deliberately arranged the read buffer B to

link to / from the previous update iteration. To complete a

brush action, we relaunch the ‘Compose’ kernel with the

brush parameters followed by the ‘Neumann/Copy’ kernel

between each update iteration. The initialization brush sets

/ to a binary step function with a small positive constant

(we choose 2 empirically):

/ðxÞ :¼ 2 � sgnðkx� pk � rÞ ð15Þ

where :¼ denotes assignment. The user can continue to

‘paint’ new foreground regions using the additive brush:

/ðxÞ :¼ /ðxÞ if kx� pk � r[0

minðkx� pk � r;/ðxÞÞ otherwise

�

ð16Þ

To erase a foreground region, we simply reassign any

values inside the brush region with a small positive

constant:

/ðxÞ :¼
/ðxÞ if kx� pk � r[0

2 otherwise

�
ð17Þ

However, while the erase brush is useful for undoing

undesired strokes, it will not stop the contour from leaking

into undesired regions, as / will continually update and

burst through the previously erased region again. There-

fore, we introduce a ‘barrier’ brush to persistently block the

level set from growing into a fixed region. Rather than

define this region in another buffer, we set / to 1 and

check for 1 values when computing D/ in the ‘Update /’

kernel:

/ðxÞ :¼
/ðxÞ if kx� pk� r[0

1 otherwise

�
ðcompose kernelÞ

ð18Þ

D/ðxÞ :¼
0 if /ðxÞ ¼ 1
D/ðxÞ otherwise

�
ðupdate / kernelÞ

ð19Þ

In our implementation, we found it useful to allow users to

pause and unpause evolution with Dt ¼ 0 and Dt ¼ 0:1,

while still allowing users to commit brush strokes. This

makes it easier to guide the contour without having to

compete against its growth. Furthermore, by using the

previous value of / stored in the B buffer z-channel in

combination with the rendered value of / stored in the

A buffer z-channel, we can display the currently brush size

and position without committing the stroke.

In Fig. 4, we illustrate two simple use-cases of our

interactive brushes. In the top row, the user paints using the

‘barrier’ brush to cover the full image region, shown in

blue. This is followed by the ‘erase’ brush (Eq. 17), to cut a

permissible region in which a new seed region is placed

(Eq. 16), which evolves to segment the macular hole

without leaking into the opening. (We show this in 3D in

the accompanying video.) Similarly, in the lower row, the

vessels are segmented without leaking into the heart (see

also Table 5 2b–c).

3.4 Real-time rendering

To render the zero-crossing of the level set function / in

3D, we launch a render kernel after the Neumann/Copy

step in the update loop (Fig. 3). We send a camera matrix

to initialize each pixel with a ray origin o and direction unit

vector d̂. We parameterize the ray’s position by r ¼ oþ d̂s

and, assuming / to be the signed distance to the zero-

crossing, advance the ray in steps by siþ1 ¼ si þ /ðrÞ.
However, / is not a perfect signed distance function;

therefore, we must divide our step size by the maximum

derivative of /; this value is not known precisely, but in

Fig. 4 Figure illustrating interactive use of our brush functions. The

blue region represents the barrier brush / ¼ 1 and red regions are

where /\0 and otherwise /[0

Journal of Real-Time Image Processing (2019) 16:2305–2318 2311

123

practice we find we can obtain sufficiently small visual

artifacts at good performance by choosing a constant step

size Ds ¼ 0:3/ðrÞ. Further, given that / is not defined

outside of the image boundaries, we initially advance s0 to

the start of the image axis-aligned bounding box (where the

s0 is calculated using an analytical ray-box intersection

function [21]). To increase visual quality, we implement

3D ambient occlusion and soft-shadows by marching the

ray in the directional of the normal and light source once it

has hit a surface [11].

The output of our real-time rendering implementation,

using hardware trilinear interpolation to sample / and with

Ds ¼ 0:3/ðrÞ, is shown in Fig. 5. (The render kernel has

negligible impact on performance.)

4 Results and validation

In this section, we provide quantitative results validating

our algorithm’s performance, parameter insensitivity, and

robustness to noise. We also provide qualitative results to

justify the utility of our interactive brushes and assess the

segmentation of real-world images from various domains.

To confirm that our algorithm implements the LGDF

energy model correctly, we measure the Jaccard index

between the resulting segmentations from the original

sequential CPU implementation and our GPU implemen-

tation, and show the results in Table 1.

These results show the GPU to be near-identical to the

CPU implementation; we find small discrepancies at the

boundary at sub-voxel precision caused by different

implementations of low-level math library functions and

different (mathematically equivalent) algebra in the inter-

mediate steps (Eqs. 11 and 12).

4.1 Noise and parameter insensitivity

We conducted a large number of noise experiments on a

synthetic 2D object, which has sharp and smooth features,

and plot the mean and standard deviation of the results in

Fig. 6. These experiments all use the same parameters and

initialize / to a small circle inside the synthetic object. We

also qualitatively show a subset of the experiments in

Table 2 from the same synthetic 2D object, and for a 3D

macular hole [45].

The results in Fig. 6 show that the method can segment

severely noisy images, corrupted with a PSNR of about

101:05, under a constant parameter assignment. While the

results in Fig. 6 show the method is more robust to

Gaussian noise than speckle noise, it is important to

understand that this is only within the parameters chosen;

improvements can generally be made by adjusting the

parameters for individual scenarios. In addition to Gaus-

sian, salt and pepper, and speckle noise, we implemented a

multi-frequency ‘cloud’ noise at a target PSNR, which

simulates intensity inhomogeneity. In Fig. 6, it appears that

the cloud noise improves under a PSNR of 100:81; however,

this is caused by the cloud-like objects inside the synthetic

object being captured. In such cases, we can still segment

the underlying object, but only through decreasing r or

using the interactive brushes.

By systematically adjusting the parameters to maximize

the mean Jaccard index over all noise types, we found the

Fig. 5 3D views during segmentation rendered in real time. a 3D

segmented brain. b 3D segmented macular hole

Table 1 Comparing the Jaccard index for our GPU implementation

with the CPU implementation

Image Jaccard index

Synthetic objects 2D 1

Tumor (small) 2D 1

Tumor (large) 2D 0.981

Macular hole 3D 0.990

Brain 3D 0.984

Tumor 3D 0.993

100.8 101 101.2 101.4
0

0.5

1

PSNR [dB]

Ja
cc
ar
d
In
de

x

Noise Types:
Gaussian
Salt & Pepper
Speckle
Clouds

Fig. 6 Jaccard index of a synthetic ground-truth segmentation and our

segmentation result using the same parameters on 4 different types of

noise. The standard deviation is shown by the error envelopes

(transparent shaded regions); our method is robust to several noise

types heavily corrupting the object to a PSNR of about 101:05

2312 Journal of Real-Time Image Processing (2019) 16:2305–2318

123

following defaults: r ¼ 3, m ¼ 50, k1 ¼ 1, k2 ¼ 1:05,

Dt ¼ 0:1, l ¼ 1. (These are the parameters used in Fig. 6

and Table 2.) We also found, through our synthetic

experiments and in segmenting real-world images, that

across all of the encountered images we only need to adjust

r, m, and k, where k1 ¼ 1 þ maxð0;�kÞ and

k2 ¼ 1 þ maxð0; kÞ. To make these parameters more intu-

itive, we assign more meaningful descriptions to them in

Table 3:

We call r a ‘capture range’ parameter as it describes the

range from which a pixel’s energy may be affected by the

contour (see Eqs. 2–4) and therefore determines the cap-

ture range. The parameter m penalizes the length of the

contour (Eqs. 6 and 8); a larger m value results in a

smoother contour which is less likely to burst through

small gaps or capture small/sharp features. Traditionally

many active contour methods have been designed to grow

or shrink until they reach the object boundary and then

stop; the parameter k optionally enables this behavior by

weighting the image terms e1 and e2 by k1 and k2,

respectively (Eq. 8), biasing the contour toward shrinking

or growing. By adjusting these parameters in real time,

inexperienced users quickly learn to intuitively manipulate

them in combination with our interactive brushes. In most

cases, we set k ¼ 0:05 to prefer contour growth and adjust

only r and m.

To further justify the importance of our interactive

brushes, we construct 6 extreme synthetic scenarios in

Table 4. Images 1–3 show Gaussian, salt and pepper,

and cloud noise corrupted to a severe PSNR of 5 (fail

cases in Fig. 6). By adjusting the parameters and con-

straining the contour with our brushes, we can easily

(3–5 s per image) segment the underlying object. Images

4–5 show that the LGDF energy can segment noisy

objects with intensity inhomogeneity and weak/blurred

edges. Image 6 shows an object whose intensity mean is

the same as its background, with the only difference

being in intensity variance.

4.2 Segmenting real-world images

We evaluate our software against several different imaging

modalities using real-world images and show the results in

Table 5. In all our results, we only adjust the parameters r,

m, and k as described in Table 3. By initializing /ðxÞ ¼ 2

uniformly, we are able to automatically segment small

objects without an initial seed region, such as for images of

Table 2 Segmentation without interactive brushes attained from a single circular seed region inside the object

PSNR PSNR
15 12.5 10 7.5 15 12.5 10 7.5

Gauss

Salt &
Pepper

Speckle

Clouds

Table 3 Our proposed parameters for controlling the method. All

images in this paper are generated using these three parameters within

their suggested range and constants Dt ¼ 0:1 and l ¼ 1:0

Description Symbol Suggested range Default

Capture range r ½1:01; 10� 3

Smoothing weight m ½10; 90� 50

Shrink or grow k ½� 0:1; 0:1� 0.05

Table 4 Following challenging scenarios are quickly and easily seg-

mented with our interactive brushes

Segmentation Using Interactive Brushes

1 2 3 4 5 6

Images 1–5 have a PSNR of 5 for Gaussian, salt and pepper, and multi-

frequency noise accordingly, and images 4–6 show extreme scenarios

of poorly defined and/or blurred boundaries

Journal of Real-Time Image Processing (2019) 16:2305–2318 2313

123

Table 5 Segmentation results of multiple objects displayed in different colors. 1a shows a segmented image of HaCaT human cell culture cells

using confocal microscopy, 1b shows the interdigitation of segmented layers of eisosome proteins from cryo-EM tomography data [19], 1c shows

a malaria sporozoite [38]. Row 2 shows medical CT scans of the abdomen, body, and thorax [37]. 3a shows an MRI of a cerebral aneurysm and

3b an XA angiogram [37]. 3c shows the structure of the Sec13/31 COPII coat cage from cryo-EM data [44]. Row 4 shows the herpes simplex

virus capsid [6], phi procapsid [40], and the mumps virus [9], all from cryo-EM data. Row 5 shows applications outside of biology and medicine:

5a is a CT scan of an engine block [2], 5b sintered alumina [38], and 5c shows a selection of objects from a CT scan of a backpack [2]

cba

1

2

3

4

5

2314 Journal of Real-Time Image Processing (2019) 16:2305–2318

123

cells. This works because dð2Þ is large enough that / can

still be deformed by image forces, allowing new segments

to appear anywhere in the image; this is not possible with a

narrow band approach. In general, the default parameters

suggested in Table 3 work well for most object segmen-

tations; however, in challenging cases (such as multiple

objects or thin objects) the parameters r and m can be

dynamically adjusted in real time where the user can ‘slide’

the parameter within the suggested range until the motion

of the contour is satisfactory to achieve the desired result.

Many of the segmentations (Table 5 1a, 3a-b, and 5b-c)

are not possible with the current GPU level set segmenta-

tion approaches, which use simple speed functions to

attract and/or shrink the contour within a fixed intensity

range [18, 23, 36]. For example, when painting an initial

seed region inside a vessel network with intensity inho-

mogeneity, the active contour will not grow along the

vessel. In contrast, the adopted LGDF energy model allows

us to paint a simple initial sphere anywhere on the object

which then spreads through the network of vessels. In cases

where the contour evolution misses a vessel or overseg-

ments part of the object, evolution is temporarily halted

(Dt ¼ 0), local amendments are made, and then evolution

is resumed (Dt ¼ 0:1). By making local adjustments with a

high level of visual feedback, we can spot such issues and

make amendments immediately.

4.3 Performance and memory usage

In our cross-platform C??/OpenCL application, we mea-

sure the mean kernel timings over 100 frames for different

sized images on a GTX TITAN X and show the results in

Fig. 7. We can see that the overall algorithm performance is

approximately linear in the number of pixels/voxels, since

we process the full dataset as the C1 Heaviside and Dirac

functions are nonzero everywhere. This agrees with our

expected complexity of Oðn � lÞ for an input of n voxels and

a truncated 1D Gaussian kernel of length l.

Figure 8 shows how the overall running time increa-

ses with larger r and that the performance in the z-axis

becomes more similar to the y- and x-axes with larger r.

In the practical and suggested range of r [1.01, 10]

(Table 3), it can be seen that the running time increases

in small steps (zoom to the lower-left of the graph). This

is because running time is primarily influenced by the

size of the 1D Gaussian filter buffer, whose size is b4rþ
1c to approximate the Gaussian function with reasonable

support.

We also investigated other optimizations given that

the Gaussian convolution is the primary bottleneck of

our approach. We implemented Gaussian convolution in

the Fourier domain using MATLAB GPU arrays. While

Fourier convolution allows for a lower order of growth,

the benefits are outweighed by the large constant factor

due to the algorithm complexity; this takes 400ms per

frame using a GTX TITAN X, which is off the scale in

Fig. 8.

The mean time of 100 iterations with our C?? OpenCL

implementation is evaluated across different hardware and

compared to our GPU Fourier implementation and the

original MATLAB version on the CPU (which is vector-

ized and calls code written in C for the Gaussian convo-

lution). These results are shown in Fig. 9.

In Fig. 9, our algorithm substantially outperforms the

original implementation in all images. Given that we pro-

cess the entire dataset with compact kernels and separable

convolutions, we can fully utilize high-end GPU hardware

to obtain a substantial speedup of up to three orders of

magnitude from the original version, and 1–2 orders of

magnitude from our GPU Fourier convolution version.

This means that segmentations which previously took over

an hour can now be achieved in a few seconds, without any

trade in quality.

0 10 20 30 40 50 60

Time [ms] / iteration

Tumour 3D
256×256×160

Brain 3D
187×217×181

Macular Hole 3D
183×139×49

Tumour 2D
1024×1024

Small tumour 2D
256×256

Synthetic 2D
79×75

Norm Grad Prep Conv X Gaus Y Gaus Z Gaus Prep Conv 2
X Gaus Y Gaus Z Gaus Update Phi Copy To A

Fig. 7 Mean kernel timings over 100 frames for different images of

different sizes. r ¼ 3 in all cases. Despite using texture memory,

which is cached and has spatial locality in multiple dimensions [43],

and fast constant memory to store the 1D separable Gaussian

coefficients, convolution in the z-axis is significantly slower than the

y- and x-axes

0

10

20

30

40

50

60

0 3 5 8 10 13 16 18 21 23 26 29 31 34 36 39 42 44 47 49 52 55 57 60 62 65 68 70 73 75 78 81 83 86 88 91 94 96 99

Ti
m

e
[m

s]
 /

ite
ra

tio
n

Standard deviation

Norm Grad Prep Conv X Gauss Y Gauss Z Gauss Prep Conv 2
X Gauss Y Gauss Z Gauss Update Phi Copy To A

Fig. 8 Mean kernel timings over 100 frames with increasing r for 3D

macular hole. In practice, we rarely require r[10

Journal of Real-Time Image Processing (2019) 16:2305–2318 2315

123

With high-end GPU hardware, our algorithm is limited

by memory consumption. We require 48 bytes of texture

memory per pixel or voxel for the entire image (4 bytes per

channel in Fig. 3). In cases where the image does not fit

into the available GPU memory, we must either down-

sample or crop the region of interest before segmentation.

5 Discussion

The primary limitation of our implementation is that we

require storing the full dataset at the original resolution in

GPU texture memory, as the C1 Heaviside and Dirac

functions are nonzero everywhere to reduce convergence

on local minima [5]. This also limits the algorithm’s speed.

In future work, we will investigate dynamically adjusting

the resolution away from the zero-crossing of the C1

Heaviside, to reduce the memory requirements and

improve performance, and evaluate the impact of this

approach on segmentation quality.

While there are some excellent publicly available data-

sets for interactive segmentation of real-world 2D color

images and videos [53], the problem of segmenting

everyday objects in color photographs, e.g., with a graph

cut approach on distributions of color information, is fun-

damentally different to segmenting a tissue or organ. In the

latter case, the challenge is more often due to intensity

inhomogeneity or poorly defined edges, rather than com-

plex backgrounds or discontinuities within the object. As

with [51], we would like to see benchmark 3D biological

and medical datasets for evaluating interactive

performance.

6 Conclusion

In conclusion, we have shown that sophisticated level set

segmentation energy models, with sequential dependencies

among intermediate processing steps, can be implemented

efficiently on the GPU through careful structuring of the

GPU kernels within the constraints of the GPU memory

architecture. While active contours are used in unsuper-

vised algorithms, they continue to benefit from interactive

approaches that enable users to guide and constrain the

contour to capture specific parts of more challenging

objects. We have shown that the LGDF energy model

proposed by [47] requires little parameter tuning, is robust

against different types of noise, and can be generalized to a

broad range of real-world 3D images from biology and

medicine. Segmenting many of these images was not

possible with existing GPU level set algorithms due to their

simple energy functionals. We have greatly enhanced the

LGDF model’s performance, making it practical in many

more use-cases than before (including 3D images). We also

extended its functionality through interactive brush func-

tions that give direct influence over the dynamic contour

evolution. In the future, we believe GPU adaptations of

advanced segmentation algorithms will continue to prolif-

erate, using similar design processes to ours.

7 Availability

We release our C??/OpenCL software and source code

under the GNU General Public License Version 3, along-

side an optional MATLAB wrapper. The implementation is

cross-platform using GLFW with few dependencies, where

binaries for Linux and Windows are also available: https://

github.com/cwkx/IGAC

Acknowledgements We are grateful to NVIDIA for providing a GTX

TITAN X for this research. Table 5 1a shows fixed HaCaT human cell

culture cells stained with SiR-Actin (Spirochrome) RED, rat anti-

tubulin antibody/secondary anti-rat Alexa488 antibody GREEN and

DNA DAPI BLUE. The cells are imaged with a Zeiss 880 Airyscan

LSM confocal microscope, prepared, and imaged by Miss Bethany

Cole, Miss Joanne Robson & Dr Tim Hawkins. Durham Centre for

Bioimaging Technology, Department of Biosciences, Durham

University.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

0.01

0.1

1

10

100

1000

10000

100000

1000000

Synthetic
Objects 2D

Tumour
(small) 2D

Tumour
(large) 2D

Macular Hole
3D

Brain 3D Tumour 3D

Ti
m

e
[m

s]
 /

ite
ra

tio
n

GTX TITAN X GTX TITAN X (GPU Fourier Version)
GeForce 745 i7-4790 (CPU Original Version)
Intel HD 4600

Fig. 9 Mean time [ms] over 100 iterations on different GPU

hardware, compared to the original MATLAB implementation and

our implementation using fast Fourier convolution on the GPU. Our

OpenCL implementation achieves over a � 1,000 speedup over the

original vectorized MATLAB version in larger images, scaling up

with the parallel hardware accordingly

2316 Journal of Real-Time Image Processing (2019) 16:2305–2318

123

https://github.com/cwkx/IGAC
https://github.com/cwkx/IGAC
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

References

1. Adalsteinsson, D., Sethian, J.A.: A fast level set method for

propagating interfaces. J. Comput. Phys. 118(2), 269–277 (1995)

2. Bartz, D.: Volvis datasets. http://www.volvis.org (2005). Acces-

sed 2016 Mar 30

3. Caselles, V., Catté, F., Coll, T., Dibos, F.: A geometric model for

active contours in image processing. Numer. Math. 66(1), 1–31

(1993)

4. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for

convex problems with applications to imaging. J. Math. Imaging

Vis. 40(1), 120–145 (2011)

5. Chan, T.F., Vese, L., et al.: Active contours without edges. IEEE

Trans. Image Process. 10(2), 266–277 (2001)

6. Chang, J.T., Schmid, M.F., Rixon, F.J., Chiu, W.: Electron cry-

otomography reveals the portal in the herpesvirus capsid. J. Virol.

81(4), 2065–2068 (2007)

7. Chen, H.L.J., Samavati, F.F., Sousa, M.C., Mitchell, J.R.: Sketch-

based volumetric seeded region growing. In: Proceedings of the

Third Eurographics Conference on Sketch-Based Interfaces and

Modeling, pp. 123–130 (2006)

8. Cocosco, C.A., Kollokian, V., Kwan, R.K.-S., Pike, G.B., Evans,

A.C.: BrainWeb: Online interface to a 3D MRI simulated brain

database. NeuroImage 5, 425 (1997)

9. Cox, R., Pickar, A., Qiu, S., Tsao, J., Rodenburg, Cynthia,

Dokland, T., Elson, A., He, B., Luo, M.: Structural studies on the

authentic mumps virus nucleocapsid showing uncoiling by the

phosphoprotein. Proc. Natl. Acad. Sci. U.S.A. 111(42),

15208–15213 (2014)

10. Eklund, A., Dufort, P., Forsberg, D., LaConte, S.M.: Medical

image processing on the GPU past, present and future. Med.

Image Anal. 17(8), 1073–1094 (2013)

11. Evans, A.: Fast approximations for global illumination on

dynamic scenes. In: ACM SIGGRAPH 2006 Courses,

pp. 153–171. ACM (2006)

12. Eyiyurekli, M., Breen, D.: Interactive free-form level-set surface-

editing operators. Comput. Graph. 34(5), 621–638 (2010)

13. Fulkerson, B., Soatto, S.: Really quick shift: image segmentation

on a GPU. In: Trends and Topics in Computer Vision,

pp. 350–358 (2010)

14. Gorelick, L., Schmidt, F.R., Boykov, Y.: Fast trust region for

segmentation. In: 2013 IEEE Conference on Computer Vision

and Pattern Recognition, pp. 1714–1721 (2013)

15. Grady, L.: Random walks for image segmentation. IEEE Trans.

Pattern Anal. Mach. Intell. 28(11), 1768–1783 (2006)

16. He, Z., Kuester, F.: GPU-based active contour segmentation

using gradient vector flow. In: International Conference on

Advances in Visual Computing, pp. 191–201 (2006)

17. Jarrin, M., Young, L., Wu, W., Girkin, J.M., Quinlan, R.A.:

Chapter twenty-one—in vivo, ex vivo, and in vitro approaches to

study intermediate filaments in the eye lens. In: Omary, M.B.,

Liem, R.K.H. (eds.) Intermediate Filament Proteins, volume 568

of Methods in Enzymology, pp. 581 – 611. Academic Press

(2016)

18. Jeong, W.K., Beyer, J., Hadwiger, M., Vazquez, A., Pfister, H.,

Whitaker, R.T.: Scalable and interactive segmentation and visu-

alization of neural processes in em datasets. IEEE Trans. Vis.

Comput. Graph. 15(6), 1505–1514 (2009)

19. Karotki, L., Huiskonen, J.T., Stefan, C.J., Ziółkowska, N.E.,

Roth, R., Surma, M.A., Krogan, N.J., Emr, S.D., Heuser, J.,

Grünewald, K., Walther, T.C.: Eisosome proteins assemble into a

membrane scaffold. J. Cell Biol. 195(5), 889–902 (2011)

20. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour

models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

21. Kay, T.L., Kajiya, J.T.: Ray tracing complex scenes. In: Con-

ference on Computer Graphics and Interactive Techniques,

SIGGRAPH, pp. 269–278. ACM (1986)

22. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature

521(7553), 436–444 (2015)

23. Lefohn, A.E., Kniss, J.M., Hansen, C.D., Whitaker, R.T.: A

streaming narrow-band algorithm: interactive computation and

visualization of level sets. IEEE Trans. Vis. Comput. Graph.

10(4), 422–433 (2004)

24. Li, C., Xu, C., Gui, C., Fox, M.D.: Level set evolution without re-

initialization: a new variational formulation. In: IEEE Computer

Society Conference on Computer Vision and Pattern Recogni-

tion, vol. 1, pp. 430–436 (2005)

25. Li, M., He, C., Zhan, Y.: Adaptive level-set evolution without

initial contours for image segmentation. J. Electron. Imaging

20(2), 023004 (2011)

26. Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape modeling with

front propagation: a level set approach. IEEE Trans. Pattern Anal.

Mach. Intell. 17(2), 158–175 (1995)

27. Mory, B.: Interactive Segmentation of 3D Medical Images with

Implicit Surfaces. Ph.D. thesis, STI, Lausanne (2011)

28. Mumford, D., Shah, J.: Optimal approximations by piecewise

smooth functions and associated variational problems. Commun.

Pure Appl. Math. 42(5), 577–685 (1989)

29. Olabarriaga, S.D., Smeulders, A.W.M.: Interaction in the seg-

mentation of medical images: a survey. Med. Image Anal. 5(2),

127–142 (2001)

30. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit

Surfaces. Applied Mathematical Sciences. Springer, New York

(2002)

31. Osher, S., Sethian, J.A.: Fronts propagating with curvature-de-

pendent speed: algorithms based on Hamilton–Jacobi formula-

tions. J. Comput. Phys. 79(1), 12–49 (1988)

32. Peng, D., Merriman, B., Osher, S., Zhao, H., Kang, M.: A PDE-

based fast local level set method. J. Comput. Phys. 155(2),

410–438 (1999)

33. Pock, T., Cremers, D., Bischof, H., Chambolle, A.: An algorithm

for minimizing the Mumford–Shah functional. In: IEEE Inter-

national Conference on Computer Vision, pp. 1133–1140 (2009)

34. Pratx, G., Xing, L.: GPU computing in medical physics: a review.

Med. Phys. 38, 2685 (2011)

35. Ren, C.Y., Reid, I.: gSLIC: a real-time implementation of SLIC

superpixel segmentation. Technical report, University of Oxford,

Department of Engineering, Technical Report (2011)

36. Roberts, M., Packer, J., Sousa, M.C., Mitchell, J.R.: A work-

efficient GPU algorithm for level set segmentation. In: Proceed-

ings of the Conference on High Performance Graphics,

pp. 123–132. Eurographics Association (2010)

37. Rosset, A., Spadola, L., Ratib, O.: Osirix: an open-source soft-

ware for navigating in multidimensional dicom images. J. Digit.

Imaging 17(3), 205–216 (2004)

38. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Lon-

gair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S.,

Schmid, B., Tinevez, J.-Y., White, D.J., Hartenstein, V., Eliceiri,

K., Tomancak, P., Cardona, A.: Fiji: an open-source platform for

biological-image analysis. Nat. Methods 9(7), 676–682 (2012)

39. Schmid, J., Iglesias-Guitián, J., Gobbetti, E., Magnenat-Thal-

mann, N.: A GPU framework for parallel segmentation of volu-

metric images using discrete deformable models. Vis. Comput.

27(2), 85–95 (2010)

40. Sen, A., Heymann, J.B., Cheng, N., Qiao, J., Mindich, L., Steven,

A.C.: Initial location of the RNA-dependent RNA polymerase in

the bacteriophage Phi6 procapsid determined by cryo-electron

microscopy. J. Biol. Chem. 283(18), 12227–12231 (2008)

Journal of Real-Time Image Processing (2019) 16:2305–2318 2317

123

http://www.volvis.org

41. Shi, L., Liu, W., Zhang, H., Xie, Y., Wang, D.: A survey of GPU-

based medical image computing techniques. Quant. Imaging

Med. Surg. 2(3), 2223–2292 (2012)

42. Smistad, E., Elster, A.C., Lindseth, F.: Real-time gradient vector

flow on GPUs using OpenCL. J. Real Time Image Process. 10(1),

67–74 (2012)

43. Smistad, E., Falch, T.L., Bozorgi, M., Elster, A.C., Lindseth, F.:

Medical image segmentation on GPUs a comprehensive review.

Med. Image Anal. 20(1), 1–18 (2015)

44. Stagg, S.M., Gürkan, C., Fowler, D.M., LaPointe, P., Foss, T.R.,

Potter, C.S., Carragher, B., Balch, W.E.: Structure of the Sec13/

31 COPII coat cage. Nature 439(7073), 234–238 (2006)

45. Steel, D.H.W., Lotery, A.J.: Idiopathic vitreomacular traction and

macular hole: a comprehensive review of pathophysiology,

diagnosis, and treatment. Eye 27(1), 1–21 (2013)

46. Vineet, V., Narayanan, P.J.: CUDA cuts: fast graph cuts on the

GPU. In: IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, pp. 1–8 (2008)

47. Wang, L., He, L., Mishra, A., Li, C.: Active contours driven by

local Gaussian distribution fitting energy. Signal Process. 89(12),

2435–2447 (2009)

48. Whitaker, R., Breen, D., Museth, K., Soni, N.: Segmentation of

Biological Volume Datasets Using a Level-Set Framework,

pp. 249–263. Springer, Vienna (2001)

49. Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow.

IEEE Trans. Image Process. 7(3), 359–369 (1998)

50. Yushkevich, P.A., Piven, J., Hazlett, H.C., Smith, R.G., Ho, S.,

Gee, J.C., Gerig, G.: User-guided 3D active contour segmentation

of anatomical structures: significantly improved efficiency and

reliability. Neuroimage 31(3), 1116–1128 (2006)

51. Zhao, F., Xie, X.: An overview of interactive medical image

segmentation. Ann. BMVA 2013(7), 1–22 (2013)

52. Zhao, H.-K., Chan, T., Merriman, B., Osher, S.: A variational

level set approach to multiphase motion. J. Comput. Phys. 127(1),

179–195 (1996)

53. Zhu, H., Meng, F., Cai, J., Shijian, L.: Beyond pixels: a com-

prehensive survey from bottom-up to semantic image segmen-

tation and cosegmentation. J. Vis. Commun. Image Represent.

34, 12–27 (2016)

54. Zhu, L., Karasev, P., Kolesov, I., Sandhu, R., Tannenbaum, A.:

Interactive Image Segmentation From A Feedback Control Per-

spective. ArXiv e-prints (2016)

55. Zhu, S.C., Yuille, A.: Region competition: Unifying snakes,

region growing, and Bayes/MDL for multiband image segmen-

tation. IEEE Trans. Pattern Anal. Mach. Intell. 18(9), 884–900

(1996)

Chris G. Willcocks received a PhD in Computer Science at Durham

University in 2013 where he specialized in real-time GPU rendering

and deformation of large volumetric datasets. He researched object

deformation at Newcastle University before accepting a postdoctoral

research position at Durham University in 2015. His interdisciplinary

research aims to enable elegant solutions to otherwise challenging or

computationally expensive problems in the fields of machine learning,

high-performance computing, image processing, and computer

graphics.

Philip T. G. Jackson received a BSc degree in Computer Science and

Physics within the Natural Sciences Programme from Durham

University followed by an MSc in Computer Science and is currently

reading for a PhD degree in Computer Science, also from Durham

University, UK. His research has investigated recurrent and gener-

ative adversarial neural networks for multi-object localization and

counting, unsupervised learning of image embeddings, and recurrent

neural networks for sequence learning.

Carl J. Nelson received an MSc degree in Biology and Physics

within the Natural Sciences Programme from Durham University and

a PhD degree in Bioimage Informatics through Computing Science,

also from Durham University, UK. He is currently a postdoctoral

researcher at the University of Glasgow where his interdisciplinary

research focuses on developing advanced and novel microscopy

systems for imaging the developing zebrafish. These microscope and

analysis tools are used to further the understanding of biological

processes that can be gleaned through bioimaging and microscopy.

Amar V. Nasrulloh received an undergraduate degree in Physics

(2004) from Institut Teknologi Sepuluh Nopember (ITS) and a

masters degree in Electrical Engineering (2010) specializing in

Biomedical Engineering from Institut Teknologi Bandung (ITB). He

is currently reading for a PhD degree at Durham University, UK,

funded by LPDP Indonesia. His interdisciplinary research interests

focus on applying physics and image processing methods to biology

and medicine.

Boguslaw Obara received an MSc in Physics from the Jagiellonian

University and PhD in Computer Science from the AGH University of

Science and Technology, Krakow, Poland. He has been a researcher

at the Polish Academy of Sciences (2001–2007), a Fulbright fellow

(2006–2007) and a postdoctoral researcher at the University Califor-

nia, USA (2007–2009), and the University of Oxford, UK

(2007–2009). He is currently an associate professor in Computer

Science at Durham University, UK. His research focuses on image

processing techniques.

2318 Journal of Real-Time Image Processing (2019) 16:2305–2318

123

	Interactive GPU active contours for segmenting inhomogeneous objects
	Abstract
	Introduction
	Contributions

	Related work
	Method
	GPU implementation
	GPU architecture
	Interactive brushes
	Real-time rendering

	Results and validation
	Noise and parameter insensitivity
	Segmenting real-world images
	Performance and memory usage

	Discussion
	Conclusion
	Availability
	Acknowledgements
	References

