Skip to main content
Log in

Study of infrared reflection characteristics of aerial target using MODIS data on GPU

  • Special Issue Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

To study of the infrared signature of an aerial target, it is required to precisely model the background radiation. Simple empirical models or standard atmospheric models in LOWTRAN/MODTRAN were used in earlier studies. To further precisely model the thermal radiation of earth’s surface and atmospheric radiance/transmittance, the atmospheric profile, land surface temperature, and emissivity, the sea surface temperature retrieved from moderate-resolution imaging spectroradiometer, and the sea surface emissivity model developed by Wu and Smith are utilized in this study. Meanwhile, considering that the reflection of background radiation incident from different directions in each spectral wavelength can be calculated in parallel, implementations using open multi-processing and compute unified device architecture on a multi-core CPU and many-core graphics processing unit (GPU) are presented and speedups of 9\(\times\) and 258\(\times\) are obtained on a platform with dual Xeon E5-2652 CPU and an NVIDIA Tesla K80 GPU card, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Acharya, P.K., Berk, A., Anderson, G.P., Anderson, G.P., Larsen, N.F., Tsay, S.C., Stamnes, K.H.: MODTRAN4: multiple scattering and bidirectional reflectance distribution function (brdf) upgrades to MODTRAN. In: SPIE’s International Symposium on Optical Science, Engineering, and Instrumentation, International Society for Optics and Photonics, pp. 354–362 (1999). https://doi.org/10.1117/12.366389

  2. Barnes, W.L., Pagano, T.S., Salomonson, V.V.: Prelaunch characteristics of the moderate resolution imaging spectroradiometer (MODIS) on EOS-AM1. IEEE Trans. Geosci. Remote Sens. 36(4), 1088–1100 (1998). https://doi.org/10.1109/36.700993

    Article  Google Scholar 

  3. Beier, K.: Infrared radiation model for aircraft and reentry vehicle. In: 32nd Annual Technical Symposium on International Society for Optics and Photonics, pp. 363–374 (1988). https://doi.org/10.1117/12.948320

  4. Bishop, G.J., Caola, M.J., Geatches, R.M., Roberts, N.C.: SIRUS spectral signature analysis code. In: International Society for Optics and Photonics AeroSense 2003, pp. 259–269 (2003). https://doi.org/10.1117/12.487716

  5. Borbas, E.: MODIS atmosphere L2 atmosphere profile product. NASA MODIS Adaptive Processing System, Goddard Space Flight Center (2015). https://doi.org/10.5067/MODIS/MOD07_L2.006

  6. Brown, O.B., Minnett, P.J., Evans, R., Kearns, E., Kilpatrick, K., Kumar, A., Sikorski, R., Závody, A.: MODIS infrared sea surface temperature algorithm algorithm theoretical basis document version 2.0. Univ. Miami 31, 09833 (1999)

    Google Scholar 

  7. Dagum, L., Menon, R.: OpenMP: an industry standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998). https://doi.org/10.1109/99.660313

    Article  Google Scholar 

  8. Friedman, D.: Infrared characteristics of ocean water (1.5–15\(\mu\)m). Appl. Opt. 8(10), 2073–2078 (1969). https://doi.org/10.1364/AO.8.002073

    Article  Google Scholar 

  9. Guo, X., Wu, J., Wu, Z., Huang, B.: Parallel computation of aerial target reflection of background infrared radiation: performance comparison of openmp, openacc, and cuda implementations. IEEE J. Select. Top. Appl. Earth Obs. Remote Sens. 9(4), 1653–1662 (2016)

    Article  Google Scholar 

  10. Hale, G.M., Querry, M.R.: Optical constants of water in the 200-nm to 200-\(\mu\)m wavelength region. Appl. Opt. 12(3), 555–563 (1973). https://doi.org/10.1364/AO.12.000555

    Article  Google Scholar 

  11. Huang, W., Ji, H.: Effect of environmental radiation on the long-wave infrared signature of cruise aircraft. Aerosp. Sci. Technol. 56, 125–134 (2016). https://doi.org/10.1016/j.ast.2016.07.006

    Article  Google Scholar 

  12. Kreiss W., Lanich, W., Niple, E.: Electro-optical aerial targeting workstation. In: Proceedings of the IEEE 1989 National, Aerospace and Electronics Conference, NAECON 1989, IEEE, pp. 902–908 (1989). 10.1109/NAECON.1989.40320

  13. Mahulikar, S.P., Potnuru, S.K., Rao, G.A.: Study of sunshine, skyshine, and earthshine for aircraft infrared detection. J. Opt. A Pure Appl. Opt. 11(4), 045703 (2009). https://doi.org/10.1088/1464-4258/11/4/045703

    Article  Google Scholar 

  14. Masuda, K., Takashima, T., Takayama, Y.: Emissivity of pure and sea waters for the model sea surface in the infrared window regions. Remote Sens. Environ. 24(2), 313–329 (1988). https://doi.org/10.1016/j.rse.2004.09.002

    Article  Google Scholar 

  15. Nicodemus, F.E.: Reflectance nomenclature and directional reflectance and emissivity. Appl. Opt. 9(6), 1474–1475 (1970). https://doi.org/10.1364/AO.9.001474

    Article  Google Scholar 

  16. NVIDIAC (2007) Compute unified device architecture programming guide. NVIDIA Corporation

  17. NVIDIAC (2013a) Compiler driver NVCC. NVIDIA Corporation

  18. NVIDIAC (2013b) Tuning CUDA applications for KEPLER. NVIDIA Corporation

  19. Petitcolin, F., Vermote, E.: Land surface reflectance, emissivity and temperature from MODIS middle and thermal infrared data. Remote Sens. Environ. 83(1), 112–134 (2002). https://doi.org/10.1016/S0034-4257(02)00094-9

    Article  Google Scholar 

  20. Rao, A.G., Mahulikar, S.P.: Effect of atmospheric transmission and radiance on aircraft infared signatures. J. Aircr. 42(4), 1046–1054 (2005). https://doi.org/10.2514/1.7515

    Article  Google Scholar 

  21. Salisbury, J.W., Wald, A., D’Aria, D.M.: Thermal-infrared remote sensing and Kirchhoff’s law: 1. Laboratory measurements. J. Geophys. Res. Solid Earth 99(B6), 11897–11911 (1994). https://doi.org/10.1029/93JB03600

    Article  Google Scholar 

  22. Wan, Z.: Collection-5 MODIS land surface temperature products users guide. University of California, Santa Barbara, ICESS (2007)

  23. Wan, Z., Zhang, Y., Zhang, Q., Li, Z.L.: Quality assessment and validation of the MODIS global land surface temperature. Int. J. Remote Sens. 25(1), 261–274 (2004). https://doi.org/10.1080/0143116031000116417

    Article  Google Scholar 

  24. Wang, W., Liang, S., Augustine, J.A.: Estimating high spatial resolution clear-sky land surface upwelling longwave radiation from MODIS data. IEEE Trans. Geosci. Remote Sens. 47(5), 1559–1570 (2009). https://doi.org/10.1109/TGRS.2008.2005206

    Article  Google Scholar 

  25. Wang, Z.M.: MODIS land surface temperature algorithm theoretical basis document, version3 3 (1999)

  26. Wilson, M., Elliott, R., Youern, K.: The use of measured sky radiance data to improve infrared signature modelling. Int. J. Remote Sens. 29(7), 1929–1944 (2008). https://doi.org/10.1080/01431160701395179

    Article  Google Scholar 

  27. Wu, X., Smith, W.L.: Emissivity of rough sea surface for 8–13 \(\mu\)m: modeling and verification. Appl. Opt. 36(12), 2609–2619 (1997). https://doi.org/10.1364/AO.36.002609

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants 61775175, 61571355 and 61601355.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaji Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Wu, Z., Wu, J. et al. Study of infrared reflection characteristics of aerial target using MODIS data on GPU. J Real-Time Image Proc 15, 643–655 (2018). https://doi.org/10.1007/s11554-018-0754-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-018-0754-3

Keywords

Navigation