Skip to main content
Log in

GPU implementation of RX detection using spectral derivative features

  • Special Issue Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Hyperspectral image (HSI), which can record abundance information of a pixel, has shown huge potential on many applications such as image classification, target and anomaly detection and so on. Nowadays, anomaly detection has attracted more attention because there is no limitation of spectral library. A standard approach for anomaly detection is the method developed by Reed and Xiaoli, called RX algorithm. However, the data volume is getting bigger with the developing of imaging technology. A problem that ensues is the rapid increase of computation complexity and this will lead a time-consumed application. In addition, there will be noise in HSI with the influence of illumination and atmospheric. In this paper, we realize an implementation of RX algorithm on NVIDIA GeForce 1060 GPU with the utilization of derivative features. On one hand, the GPU parallel implementation reach the purpose of real-time processing and it also eliminates the storage burden of on-board processing. On the other hand, the derivative features have better performance on salient features detection and noise restraint. Thus, it can further promote the detection performance of RXD. In our experiments, three real HSI datasets were tested to verify the effect of GPU parallel implementation. The experiment results had indicated that the utilization of derivative features can promote the detection performance. Compared with serial computation, the parallel implementation achieves a great reduction on processing time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. https://speclab.cr.usgs.gov/wtc/.

References

  1. Bao, J., Chi, M., Benediktsson, J.A.: Spectral derivative features for classification of hyperspectral remote sensing images: Experimental evaluation. IEEE J. Select. Topics Appl. Earth Obs. Remote Sens. 6(2), 594–601 (2013)

    Article  Google Scholar 

  2. Chang, C.I., Chiang, S.S.: Anomaly detection and classification for hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 40(6), 1314–1325 (2002)

    Article  Google Scholar 

  3. Dehnavi, S., Maghsoudi, Y., ValadanZouj, M., BaniAdam, F.: Beneficiary of high order derivative spectrum in target detection. In: Geoscience and Remote Sensing Symposium (IGARSS), IEEE International. IEEE, pp. 4608–4611 (2014)

  4. Freeman, J., Downs, F., Marcucci, L., Lewis, E.N., Blume, B., Rish, J.: Multispectral and hyperspectral imaging: applications for medical and surgical diagnostics. In: Engineering in Medicine and Biology Society. Proceedings of the 19th Annual International Conference of the IEEE, vol. 2. IEEE, pp. 700–701 (1997)

  5. Goodenough, D.G., Chen, H., Gordon, P., Niemann, K.O., Quinn, G.: Forest applications with hyperspectral imaging. In: Geoscience and Remote Sensing Symposium (IGARSS), IEEE International. IEEE, pp. 7309–7312 (2012)

  6. Guo, Q., Zhang, B., Ran, Q., Gao, L., Li, J., Plaza, A.: Weighted-rxd and linear filter-based rxd: Improving background statistics estimation for anomaly detection in hyperspectral imagery. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 7(6), 2351–2366 (2014)

    Article  Google Scholar 

  7. Herweg, J.A., Kerekes, J.P., Weatherbee, O., Messinger, D., van Aardt, J., Ientilucci, E., Ninkov, Z., Faulring, J., Raqueño, N., Meola, J.: Spectir hyperspectral airborne rochester experiment data collection campaign. In: SPIE defense, security, and sensing. International Society for Optics and Photonics, pp. 839,028–839,028 (2012)

  8. Khazai, S., Safari, A., Mojaradi, B., Homayouni, S.: An approach for subpixel anomaly detection in hyperspectral images. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 6(2), 769–778 (2013)

    Article  Google Scholar 

  9. Kwon, H., Nasrabadi, N.M.: Kernel rx-algorithm: A nonlinear anomaly detector for hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 43(2), 388–397 (2005)

    Article  Google Scholar 

  10. Lampropoulos, G.A., Liu, T., Qian, S.E., Fei, C.: Hyperspectral classification fusion for classifying different military targets. In: Geoscience and Remote Sensing Symposium. IGARSS 2008. IEEE International, vol. 3. IEEE, pp. III–262 (2008)

  11. Li, W., Du, Q.: Collaborative representation for hyperspectral anomaly detection. IEEE Trans. Geosci. Remote Sens. 53(3), 1463–1474 (2015)

    Article  Google Scholar 

  12. Liu, W.m., Chang, C.I.: Multiple-window anomaly detection for hyperspectral imagery. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 6(2), 644–658 (2013)

    Article  Google Scholar 

  13. Lopez, S., Vladimirova, T., Gonzalez, C., Resano, J., Mozos, D., Plaza, A.: The promise of reconfigurable computing for hyperspectral imaging onboard systems: A review and trends. Proc. IEEE 101(3), 698–722 (2013)

    Article  Google Scholar 

  14. Marshall, S., Kelman, T., Qiao, T., Murray, P., Zabalza, J.: Hyperspectral imaging for food applications. In: Signal Processing Conference (EUSIPCO), 23rd European. IEEE, pp. 2854–2858 (2015)

  15. Paz, A., Plaza, A.: Gpu implementation of target and anomaly detection algorithms for remotely sensed hyperspectral image analysis. Proc. SPIE 7810, 78100R (2010)

    Article  Google Scholar 

  16. Plaza, A., Du, Q., Chang, Y.L., King, R.L.: High performance computing for hyperspectral remote sensing. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 4(3), 528–544 (2011)

    Article  Google Scholar 

  17. Plaza, A., Valencia, D., Plaza, J., Chang, C.I.: Parallel implementation of endmember extraction algorithms from hyperspectral data. IEEE Geosci. Remote Sens. Lett. 3(3), 334–338 (2006)

    Article  Google Scholar 

  18. Reed, I.S., Yu, X.: Adaptive multiple-band cfar detection of an optical pattern with unknown spectral distribution. IEEE Trans. Acoust. Speech Signal Process. 38(10), 1760–1770 (1990)

    Article  Google Scholar 

  19. Sánchez, S., Ramalho, R., Sousa, L., Plaza, A.: Real-time implementation of remotely sensed hyperspectral image unmixing on gpus. J. Real Time Image Proc. 10(3), 469–483 (2015)

    Article  Google Scholar 

  20. Solomon, J., Rock, B.: Imaging spectrometry for earth remote sensing. Science 228(4704), 1147–1152 (1985)

    Article  Google Scholar 

  21. Tarabalka, Y., Haavardsholm, T.V., Kåsen, I., Skauli, T.: Real-time anomaly detection in hyperspectral images using multivariate normal mixture models and gpu processing. J. Real Time Image Proc. 4(3), 287–300 (2009)

    Article  Google Scholar 

  22. Torti, E., Acquistapace, M., Danese, G., Leporati, F., Plaza, A.: Real-time identification of hyperspectral subspaces. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 7(6), 2680–2687 (2014)

    Article  Google Scholar 

  23. Torti, E., Fontanella, A., Plaza, A.: Parallel real-time virtual dimensionality estimation for hyperspectral images. J. Real Time Image Proc. 1, 1–9 (2017)

    Google Scholar 

  24. Tsai, F., Philpot, W.D.: A derivative-aided hyperspectral image analysis system for land-cover classification. IEEE Trans. Geosci. Remote Sens. 40(2), 416–425 (2002)

    Article  Google Scholar 

  25. Wang, J., Jiao, L., Liu, H., Yang, S., Liu, F.: Hyperspectral image classification by spatial-spectral derivative-aided kernel joint sparse representation. IEEE J. Sel. Topics App. Earth Obs. Remote Sens. 8(6), 2485–2500 (2015)

    Article  Google Scholar 

  26. Wang, Q., Zhang, J., Chen, J., Zhang, Y.: An improved spectral reflectance and derivative feature fusion for hyperspectral image classification. In: Geoscience and Remote Sensing Symposium (IGARSS), IEEE International. IEEE, pp. 1696–1699 (2011)

  27. Wu, Y., Gao, L., Zhang, B., Yang, B., Chen, Z.: Embedded gpu implementation of anomaly detection for hyperspectral images. In: SPIE Remote Sensing. International Society for Optics and Photonics, pp. 964,608–964,608 (2015)

  28. Wu, Y., Gao, L., Zhang, B., Zhao, H., Li, J.: Real-time implementation of optimized maximum noise fraction transform for feature extraction of hyperspectral images. J. Appl. Remote Sens. 8(1), 084,797–084,797 (2014)

    Article  Google Scholar 

  29. Wu, Y., Li, J., Gao, L., Tan, X., Zhang, B.: Graphics processing unit–accelerated computation of the Markov random fields and loopy belief propagation algorithms for hyperspectral image classification. J. Appl. Remote Sens. 9(1), 097,295–097,295 (2015)

    Article  Google Scholar 

  30. Wu, Z., Wang, Q., Plaza, A., Li, J., Liu, J., Wei, Z.: Parallel implementation of sparse representation classifiers for hyperspectral imagery on gpus. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 8(6), 2912–2925 (2015)

    Article  Google Scholar 

  31. Ye, Z., He, M., Fowler, J.E., Du, Q.: Hyperspectral image classification based on spectra derivative features and locality preserving analysis. In: Signal and Information Processing (ChinaSIP), IEEE China Summit & International Conference on. IEEE, pp. 138–142 (2014)

  32. Zhao, C., You, W., Wang, Y., Wang, J.: Gpu implementation for real-time hyperspectral anomaly detection. In: Digital Signal Processing (DSP), IEEE International Conference on. IEEE, pp. 940–943 (2015)

  33. Zhou, J., Kwan, C., Ayhan, B., Eismann, M.T.: A novel cluster kernel rx algorithm for anomaly and change detection using hyperspectral images. IEEE Trans. Geosci. Remote Sens. 54(11), 6497–6504 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61571033), the China Postdoctoral Science Foundation, Project number(2017M620586), Beijing Natural Science Foundation (4172043), Beijing Nova Program (Z171100001117050), and partly by the Fundamental Research Funds for the Central Universities (BUCTRC201615).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, L., Li, L. & Li, W. GPU implementation of RX detection using spectral derivative features. J Real-Time Image Proc 15, 509–522 (2018). https://doi.org/10.1007/s11554-018-0773-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-018-0773-0

Keywords

Navigation