Skip to main content
Log in

Fast dimensionality reduction and classification of hyperspectral images with extreme learning machines

  • Special Issue Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Recent advances in remote sensing techniques allow for the collection of hyperspectral images with enhanced spatial and spectral resolution. In many applications, these images need to be processed and interpreted in real-time, since analysis results need to be obtained almost instantaneously. However, the large amount of data that these images comprise introduces significant processing challenges. This also complicates the analysis performed by traditional machine learning algorithms. To address this issue, dimensionality reduction techniques aim at reducing the complexity of data while retaining the relevant information for the analysis, removing noise and redundant information. In this paper, we present a new real-time method for dimensionality reduction and classification of hyperspectral images. The newly proposed method exploits artificial neural networks, which are used to develop a fast compressor based on the extreme learning machine. The obtained experimental results indicate that the proposed method has the ability to compress and classify high-dimensional images fast enough for practical use in real-time applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. https://aviris.jpl.nasa.gov/aviris/instrument.html

References

  1. Xia, J., Bombrun, L., Adali, T., Berthoumieu, Y., Germain, C.: Spectral-Spatial Classification of Hyperspectral Images Using ICA and Edge-Preserving Filter via an Ensemble Strategy. IEEE Trans. Geosci. Remote Sens. 54(8), 4971–4982 (2016). https://doi.org/10.1109/TGRS.2016.2553842

    Article  Google Scholar 

  2. Chang, C.I.: Hyperspectral Imaging: Techniques for Spectral Detection and Classification. Springer, New York (2003). https://doi.org/10.1007/978-1-4419-9170-6

    Book  Google Scholar 

  3. Goetz, A.F.H., Vane, G., Solomon, J.E., Rock, B.N.: Imaging Spectrometry for Earth Remote Sensing. Science 228(4704), 1147–1153 (1985). https://doi.org/10.1126/science.228.4704.1147

    Article  Google Scholar 

  4. Chutia, D., Bhattacharyya, D.K., Sarma, K.K., Kalita, R., Sudhakar, S.: Hyperspectral remote sensing classifications: a perspective survey. Trans. GIS 20(4), 463–490 (2016). https://doi.org/10.1111/tgis.12164

    Article  Google Scholar 

  5. Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic Press, Cambridge (1990)

    MATH  Google Scholar 

  6. Khodadadzadeh, M., Li, J., Plaza, A., Ghassemian, H., Bioucas-Dias, J.M., Li, X.: Spectral spatial classification of hyperspectral data using local and global probabilities for mixed pixel characterization. IEEE Trans. Geosci. Remote Sens. 52(10), 6298–6314 (2014). https://doi.org/10.1109/TGRS.2013.2296031

    Article  Google Scholar 

  7. Hughes, G.: On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 14(1), 55–63 (1968). https://doi.org/10.1109/TIT.1968.1054102

    Article  Google Scholar 

  8. Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemometr. Intell. Lab. Syst. 2(1), 37–52 (1987). https://doi.org/10.1016/0169-7439(87)80084-9

    Article  Google Scholar 

  9. Jolliffe, I.: Principal Component Analysis. Springer, Springer Series in Statistics (2002)

    MATH  Google Scholar 

  10. Fernandez, D., Gonzalez, C., Mozos, D., Lopez, S.: Fpga implementation of the principal component analysis algorithm for dimensionality reduction of hyperspectral images. J. Real-Time Image Process (2016). https://doi.org/10.1007/s11554-016-0650-7

  11. Fauvel, M., Chanussot, J., Benediktsson, J.A.: Kernel principal component analysis for the classification of hyperspectral remote sensing data over urban areas. EURASIP J. Adv. Signal Process. 2009(1), 783,194 (2009). https://doi.org/10.1155/2009/783194

  12. Li, Y., Wu, Z., Wei, J., Plaza, A., Li, J., Wei, Z.: Fast principal component analysis for hyperspectral imaging based on cloud computing. In: 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, pp. 513–516 (2015). https://doi.org/10.1109/IGARSS.2015.7325813

  13. Lin, B., Tao, G., Kai, D.: Using non-negative matrix factorization with projected gradient for hyperspectral images feature extraction. In: 2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA), Melbourne, VIC, pp. 516–519 (2013). https://doi.org/10.1109/ICIEA.2013.6566423

  14. Gillis, N., Plemmons, R.J.: Sparse nonnegative matrix underapproximation and its application to hyperspectral image analysis. Linear Algebra Appl. 438(10), 3991–4007 (2013). https://doi.org/10.1016/j.laa.2012.04.033. (Special issue in honor of Abraham Berman, Moshe Goldberg, and Raphael Loewy)

    Article  MathSciNet  Google Scholar 

  15. Villa, A., Chanussot, J., Jutten, C., Benediktsson, J.A., Moussaoui, S.: On the use of ICA for hyperspectral image analysis. In: 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, pp. IV-97–IV-100 (2009). https://doi.org/10.1109/IGARSS.2009.5417363

  16. Villa, A., Benediktsson, J.A., Chanussot, J., Jutten, C.: Hyperspectral image classification with Independent component discriminant analysis. IEEE Trans. Geosci. Remote Sens. 49(12), 4865–4876 (2011). https://doi.org/10.1109/TGRS.2011.2153861

    Article  Google Scholar 

  17. Wang, J., Chang, C.I.: Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis. IEEE Trans. Geosci. Remote Sens. 44(6), 1586–1600 (2006). https://doi.org/10.1109/TGRS.2005.863297

    Article  Google Scholar 

  18. Green, A.A., Berman, M., Switzer, P., Craig, M.D.: A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans. Geosci. Remote Sens. 26(1), 65–74 (1988). https://doi.org/10.1109/36.3001

    Article  Google Scholar 

  19. Chang, C.I., Du, Q.: Interference and noise-adjusted principal components analysis. IEEE Trans. Geosci. Remote Sens. 37(5), 2387–2396 (1999). https://doi.org/10.1109/36.789637

    Article  Google Scholar 

  20. Lee, J.B., Woodyatt, A.S., Berman, M.: Enhancement of high spectral resolution remote-sensing data by a noise-adjusted principal components transform. IEEE Trans. Geosci. Remote Sens. 28(3), 295–304 (1990). https://doi.org/10.1109/36.54356

    Article  Google Scholar 

  21. Iyer, R.P., Raveendran, A., Bhuvana, S.K.T., Kavitha, R.: Hyperspectral image analysis techniques on remote sensing. In: 2017 Third International Conference on Sensing, Signal Processing and Security (ICSSS), Chennai, pp. 392–396 (2017). https://doi.org/10.1109/SSPS.2017.8071626

  22. Kuybeda, O., Malah, D., Barzohar, M.: Rank estimation and redundancy reduction of high-dimensional noisy signals with preservation of rare vectors. IEEE Trans. Signal Process. 55(12), 5579–5592 (2007). https://doi.org/10.1109/TSP.2007.901645

    Article  MathSciNet  MATH  Google Scholar 

  23. Acito, N., Diani, M., Corsini, G.: A new algorithm for robust estimation of the signal subspace in hyperspectral images in the presence of rare signal components. IEEE Trans. Geosci. Remote Sens. 47(11), 3844–3856 (2009). https://doi.org/10.1109/TGRS.2009.2021764

    Article  Google Scholar 

  24. Acito, N., Diani, M., Corsini, G.: Hyperspectral signal subspace identification in the presence of rare signal components. IEEE Trans. Geosci. Remote Sens. 48(4), 1940–1954 (2010). https://doi.org/10.1109/TGRS.2009.2035445

    Article  Google Scholar 

  25. Acito, N., Diani, M., Corsini, G.: Hyperspectral signal subspace identification in the presence of rare vectors and signal-dependent noise. IEEE Trans. Geosci. Remote Sens. 51(1), 283–299 (2013). https://doi.org/10.1109/TGRS.2012.2201488

    Article  Google Scholar 

  26. Atkinson, P.M., Tatnall, A.R.L.: Introduction Neural networks in remote sensing. Int. J. Remote Sens. 18(4), 699–709 (1997). https://doi.org/10.1080/014311697218700

    Article  Google Scholar 

  27. Benediktsson, J.A., Swain, P.H., Ersoy, O.K.: Conjugate gradient neural networks in classification of very high dimensional remote sensing data. Int. J. Remote Sens. 14(15), 2883–2903 (1993)

    Article  Google Scholar 

  28. Paoletti, M.E., Haut, J.M., Plaza, J., Plaza, A.: A new deep convolutional neural network for fast hyperspectral image classification. ISPRS J. Photogramm. Remote Sens. (2017). https://doi.org/10.1016/j.isprsjprs.2017.11.021

    Article  Google Scholar 

  29. Bishop, C.: Pattern Recognition and Machine Learning. Springer-Verlag, New York (2006)

    MATH  Google Scholar 

  30. Hinton, G.E., Zemel, R.S.: Autoencoders, minimum description length and helmholtz free energy. In: Proceedings of the 6th International Conference on Neural Information Processing Systems, NIPS’93, pp. 3–10. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1993)

  31. Bishop, C.: Neural Networks for Pattern Recognition. Advanced Texts in Econometrics. Clarendon Press, New York (1995)

    Google Scholar 

  32. Hinton, G., Salakhutdinov, R.: Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006). https://doi.org/10.1126/science.1127647

    Article  MathSciNet  MATH  Google Scholar 

  33. Chen, Y., Lin, Z., Zhao, X., Wang, G., Gu, Y.: Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 7(6), 2094–2107 (2014). https://doi.org/10.1109/JSTARS.2014.2329330

    Article  Google Scholar 

  34. Karhunen, J., Raiko, T., Cho, K.H.: Chapter 7—Unsupervised deep learning: a short review. In: Advances in Independent Component Analysis and Learning Machines, pp. 125–142. Academic Press (2015). ISBN 9780128028063. https://doi.org/10.1016/B978-0-12-802806-3.00007-5

    Chapter  Google Scholar 

  35. Zhang, P., Gong, M., Su, L., Liu, J., Li, Z.: Change detection based on deep feature representation and mapping transformation for multi-spatial-resolution remote sensing images. ISPRS J. Photogramm. Remote Sens. 116, 24–41 (2016). https://doi.org/10.1016/j.isprsjprs.2016.02.013

    Article  Google Scholar 

  36. Licciardi, G.A., Chanussot, J., Piscini, A.: Spectral compression of hyperspectral images by means of nonlinear principal component analysis decorrelation. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 5092–5096 (2014). https://doi.org/10.1109/ICIP.2014.7026031

  37. Cavalli, R.M., Licciardi, G.A., Chanussot, J.: Detection of anomalies produced by buried archaeological structures using nonlinear principal component analysis applied to airborne hyperspectral image. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 6(2), 659–669 (2013). https://doi.org/10.1109/JSTARS.2012.2227301

    Article  Google Scholar 

  38. Penalver, M., Del Frate, F., Paoletti, M.E., Haut, J.M., Plaza, J., Plaza, A.: Onboard payload-data dimensionality reduction. In: 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, pp. 783–786 (2017). https://doi.org/10.1109/IGARSS.2017.8127069

  39. Benediktsson, J.A., Swain, P.H.: Statistical Methods and Neural Network Approaches for Classification of Data from Multiple Sources. Ph.D. thesis, PhD thesis, Purdue Univ., School of Elect. Eng. West Lafayette, IN (1990)

  40. Haut, J.M., Paoletti, M., Plaza, J., Plaza, A.: Evaluación del rendimiento de una implementación Cloud para un clasificador neuronal aplicado a imágenes hiperespectrales. Actas Jornadas Sarteco pp. 127–134 (2016)

  41. Richards, J.A.: Analysis of remotely sensed data: the formative decades and the future. IEEE Trans. Geosci. Remote Sens. 43(3), 422–432 (2005). https://doi.org/10.1109/TGRS.2004.837326

    Article  MathSciNet  Google Scholar 

  42. Carlsohn, M.: Special issue on spectral imaging: Real-time processing of hyperspectral data. J. Real-Time Image Proc. 1(2), 99–100 (2006). https://doi.org/10.1007/s11554-006-0020-y

    Article  Google Scholar 

  43. Plaza, A.J.: Preface to the Special issue on architectures and techniques for real-time processing of remotely sensed images. J. Real-Time Image Proc. 4(3), 191–193 (2009). https://doi.org/10.1007/s11554-009-0126-0

    Article  Google Scholar 

  44. du, Q., Nekovei, R.: Fast real-time onboard processing of hyperspectral imagery for detection and classification. J. Real-Time Image Process. 4(3), 273–286 (2009). https://doi.org/10.1007/s11554-008-0106-9

    Article  Google Scholar 

  45. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(13), 489–501 (2006). https://doi.org/10.1016/j.neucom.2005.12.126. Neural NetworksSelected Papers from the 7th Brazilian Symposium on Neural Networks (SBRN ’04)7th Brazilian Symposium on Neural Networks

    Article  Google Scholar 

  46. Samat, A., Du, P., Liu, S., Li, J., Cheng, L.: \({{E}^{2}}{LMs}\): ensemble extreme learning machines for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 7(4), 1060–1069 (2014). https://doi.org/10.1109/JSTARS.2014.2301775

    Article  Google Scholar 

  47. Pal, M.: Extreme-learning-machine-based land cover classification. Int. J. Remote Sens. 30(14), 3835–3841 (2009). https://doi.org/10.1080/01431160902788636

    Article  Google Scholar 

  48. Pal, M., Maxwell, A.E., Warner, T.A.: Kernel-based extreme learning machine for remote-sensing image classification. Remote Sens. Lett. 4(9), 853–862 (2013). https://doi.org/10.1080/2150704X.2013.805279

    Article  Google Scholar 

  49. Chen, C., Li, W., Su, H., Liu, K.: Spectral-spatial classification of hyperspectral image based on kernel extreme learning machine. Remote Sens. 6(6), 5795–5814 (2014). https://doi.org/10.3390/rs6065795

    Article  Google Scholar 

  50. Zhou, Y., Peng, J., Chen, C.L.P.: Extreme learning machine with composite kernels for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 8(6), 2351–2360 (2015). https://doi.org/10.1109/JSTARS.2014.2359965

    Article  Google Scholar 

  51. Lv, Q., Niu, X., Dou, Y., Wang, Y., Xu, J., Zhou, J.: Hyperspectral image classification via kernel extreme learning machine using local receptive fields. In: 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, pp. 256–260 (2016). https://doi.org/10.1109/ICIP.2016.7532358

  52. Shen, Y., Xu, J., Li, H., Xiao, L.: ELM-based spectral-spatial classification of hyperspectral images using bilateral filtering information on spectral band-subsets. In: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, pp. 497–500 (2016). https://doi.org/10.1109/IGARSS.2016.7729123

  53. Shen, Y., Chen, J., Xiao, L.: Supervised classification of hyperspectral images using local-receptive-fields-based kernel extreme learning machine. In: 2017 IEEE International Conference on Image Processing (ICIP), Beijing, pp. 3120–3124 (2017). https://doi.org/10.1109/ICIP.2017.8296857

  54. Bazi, Y., Alajlan, N., Melgani, F., AlHichri, H., Malek, S., Yager, R.R.: Differential evolution extreme learning machine for the classification of hyperspectral images. IEEE Geosci. Remote Sens. Lett. 11(6), 1066–1070 (2014). https://doi.org/10.1109/LGRS.2013.2286078

    Article  Google Scholar 

  55. Heras, D.B., Argüello, F., Quesada-Barriuso, P.: Exploring elm-based spatial-spectral classification of hyperspectral images. Int. J. Remote Sens. 35(2), 401–423 (2014). https://doi.org/10.1080/01431161.2013.869633

    Article  Google Scholar 

  56. Moreno, R., Corona, F.: Lendasse, A., Graña, M.G., Galvão, L.S.G.: Extreme learning machines for soybean classification in remote sensing hyperspectral images. Neurocomputing 128, 207–216 (2014). https://doi.org/10.1016/j.neucom.2013.03.057

    Article  Google Scholar 

  57. Yan, D., Chu, Y., Li, L., Liu, D.: Hyperspectral remote sensing image classification with information discriminative extreme learning machine. Multimed. Tools Appl. 77(5), 5803–5818 (2018). https://doi.org/10.1007/s11042-017-4494-3

    Article  Google Scholar 

  58. Xu, J., Li, H., Liu, P., Xiao, L.: A novel hyperspectral image clustering method with context-aware unsupervised discriminative extreme learning machine. IEEE Access PP(99), 1–1 (2018). https://doi.org/10.1109/ACCESS.2018.2813988

    Article  Google Scholar 

  59. Chen, H., Peng, J., Zhou, Y., Li, L., Pan, Z.: Extreme learning machine for ranking: generalization analysis and applications. Neural Netw. 53, 119–126 (2014). https://doi.org/10.1016/j.neunet.2014.01.015

    Article  MATH  Google Scholar 

  60. Li, J., Kingsdorf, B., Du, Q.: Band selection for hyperspectral image classification using extreme learning machine. In: Proc. SPIE 10198, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXIII, 101980R, 5 May 2017. https://doi.org/10.1117/12.2263039

  61. Alhichri, H., Bazi, Y., Alajlan, N., Ammour, N.: A hierarchical learning paradigm for semi-supervised classification of remote sensing images. In: 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, pp. 4388–4391 (2015). https://doi.org/10.1109/IGARSS.2015.7326799

  62. Su, H., Cai, Y.: Firefly algorithm optimized extreme learning machine for hyperspectral image classification. In: 2015 23rd International Conference on Geoinformatics, Wuhan, pp. 1–4 (2015). https://doi.org/10.1109/GEOINFORMATICS.2015.7378645

  63. Basterretxea, K., Martinez-Corral, U., Finker, R., del Campo, I.: Elm-based hyperspectral imagery processor for onboard real-time classification. In: 2016 Conference on Design and Architectures for Signal and Image Processing (DASIP), pp. 43–50 (2016). https://doi.org/10.1109/DASIP.2016.7853795

  64. Cambria, E., Huang, G.B., Kasun, L.L.C., Zhou, H., Vong, C.M., Lin, J., Yin, J., Cai, Z., Liu, Q., Li, K., Leung, V.C.M., Feng, L., Ong, Y.S., Lim, M.H., Akusok, A., Lendasse, A., Corona, F., Nian, R., Miche, Y., Gastaldo, P., Zunino, R., Decherchi, S., Yang, X., Mao, K., Oh, B.S., Jeon, J., Toh, K.A., Teoh, A.B.J., Kim, J., Yu, H., Chen, Y., Liu, J.: Extreme learning machines [trends controversies]. IEEE Intell. Syst. 28(6), 30–59 (2013). https://doi.org/10.1109/MIS.2013.140

    Article  Google Scholar 

  65. Zhou, H., Huang, G.B., Lin, Z., Wang, H., Soh, Y.C.: Stacked extreme learning machines. IEEE Trans. Cybern. 45(9), 2013–2025 (2015). https://doi.org/10.1109/TCYB.2014.2363492

    Article  Google Scholar 

  66. Kasun, L.L.C., Yang, Y., Huang, G.B., Zhang, Z.: Dimension reduction with extreme learning machine. IEEE Trans. Image Process. 25(8), 3906–3918 (2016). https://doi.org/10.1109/TIP.2016.2570569

    Article  MathSciNet  Google Scholar 

  67. Jutten, C., Herault, J.: Blind separation of sources, part i: an adaptive algorithm based on neuromimetic architecture. Sig. Process. 24(1), 1–10 (1991). https://doi.org/10.1016/0165-1684(91)90079-X

    Article  MATH  Google Scholar 

  68. Comon, P., Jutten, C.: Handbook of Blind Source Separation: Independent Component Analysis and Applications. Academic press, Cambridge (2010)

    Google Scholar 

  69. Santamaria, I.: Handbook of blind source separation: independent component analysis and applications (common, p. and jutten,; 2010 [book review]. IEEE Signal Process. Mag. 30(2), 133–134 (2013). https://doi.org/10.1109/MSP.2012.2230552

    Article  Google Scholar 

  70. Falco, N., Bruzzone, L., Benediktsson, J.A.: A comparative study of different ICA algorithms for hyperspectral image analysis. In: 2013 5th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Gainesville, FL, pp. 1–4 (2013). https://doi.org/10.1109/WHISPERS.2013.8080596

  71. Falco, N., Benediktsson, J.A., Bruzzone, L.: A study on the effectiveness of different independent component analysis algorithms for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 7(6), 2183–2199 (2014). https://doi.org/10.1109/JSTARS.2014.2329792

    Article  Google Scholar 

  72. Villa, A., Benediktsson, J.A., Chanussot, J., Jutten, C.: Independent Component Discriminant Analysis for hyperspectral image classification. In: 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, Reykjavik, pp. 1–4 (2010). https://doi.org/10.1109/WHISPERS.2010.5594853

  73. Mura, M.D., Villa, A., Benediktsson, J.A., Chanussot, J., Bruzzone, L.: Classification of hyperspectral images by using extended morphological attribute profiles and independent component analysis. IEEE Geosci. Remote Sens. Lett. 8(3), 542–546 (2011). https://doi.org/10.1109/LGRS.2010.2091253

    Article  Google Scholar 

  74. Nascimento, J.M.P., Dias, J.M.B.: Does independent component analysis play a role in unmixing hyperspectral data? IEEE Trans. Geosci. Remote Sens. 43(1), 175–187 (2005). https://doi.org/10.1109/TGRS.2004.839806

    Article  Google Scholar 

  75. Hyvrinen, A., Oja, E.: Independent component analysis: algorithms and applications. Neural Netw. 13(4), 411–430 (2000). https://doi.org/10.1016/S0893-6080(00)00026-5

    Article  Google Scholar 

  76. Green, A.A., Berman, M., Switzer, P., Craig, M.D.: A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans. Geosci. Remote Sens. 26(1), 65–74 (1988). https://doi.org/10.1109/36.3001

    Article  Google Scholar 

  77. Boutsidis, C., Gallopoulos, E.: Svd based initialization: a head start for nonnegative matrix factorization. Pattern Recogn. 41(4), 1350–1362 (2008). https://doi.org/10.1016/j.patcog.2007.09.010

    Article  MATH  Google Scholar 

  78. Huang, G.-B., Siew, C.-K.: Extreme learning machine: RBF network case. In: ICARCV 2004 8th Control, Automation, Robotics and Vision Conference, vol. 2, pp. 1029–1036 (2004). https://doi.org/10.1109/ICARCV.2004.1468985

  79. Huang, G.B., Chen, L., Siew, C.K.: Universal approximation using incremental constructive feedforward networks with random hidden nodes. Trans. Neural Netw. 17(4), 879–892 (2006). https://doi.org/10.1109/TNN.2006.875977

    Article  Google Scholar 

  80. Ding, S., Xu, X., Nie, R.: Extreme learning machine and its applications. Neural Comput. Appl. 25(3), 549–556 (2014). https://doi.org/10.1007/s00521-013-1522-8

    Article  Google Scholar 

  81. Huang, G.B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. 42(2), 513–529 (2012). https://doi.org/10.1109/TSMCB.2011.2168604

    Article  Google Scholar 

  82. Tang, J., Deng, C., Huang, G.B.: Extreme learning machine for multilayer perceptron. IEEE Trans. Neural Netw. Learn. Syst. 27(4), 809–821 (2016). https://doi.org/10.1109/TNNLS.2015.2424995

    Article  MathSciNet  Google Scholar 

  83. Huang, G., Liu, T., Yang, Y., Lin, Z., Song, S., Wu, C.: Discriminative clustering via extreme learning machine. Neural Netw. 70(Supplement C), 1–8 (2015). https://doi.org/10.1016/j.neunet.2015.06.002

    Article  Google Scholar 

  84. Huang, G., Song, S., Gupta, J.N.D., Wu, C.: Semi-supervised and unsupervised extreme learning machines. IEEE Trans. Cybern. 44(12), 2405–2417 (2014). https://doi.org/10.1109/TCYB.2014.2307349

    Article  Google Scholar 

  85. Zhu, W., Miao, J., Qing, L.: Constrained extreme learning machines: a study on classification cases (2015). arXiv:1501.06115

  86. Kasun, L.L.C., Zhou, H., Huang, G.B., Vong, C.M.: Representational learning with elms for big data. IEEE Intell. Syst. 28(6), 31–34 (2013)

    Google Scholar 

  87. Huang, G.B.: What are extreme learning machines? Filling the gap between frank rosenblatts dream and john von neumanns puzzle. Cogn. Comput. 7, 263278 (2015). https://doi.org/10.1007/s12559-015-9333-0

    Article  Google Scholar 

  88. Huang, G.B., Bai, Z., Kasun, L.L.C., Vong, C.M.: Local receptive fields based extreme learning machine. IEEE Comput. Intell. Mag. 10(2), 18–29 (2015). https://doi.org/10.1109/MCI.2015.2405316

    Article  Google Scholar 

  89. Huang, G.B., Chen, L.: Convex incremental extreme learning machine. Neurocomputing 70(16), 3056–3062 (2007). https://doi.org/10.1016/j.neucom.2007.02.009. Artificial Neural Networks (IWANN 2005)

    Article  Google Scholar 

  90. Huang, G.B., Chen, L.: Enhanced random search based incremental extreme learning machine. Neurocomputing 71(16), 3460–3468 (2008). https://doi.org/10.1016/j.neucom.2007.10.008. Advances in Neural Information Processing (ICONIP 2006) / Brazilian Symposium on Neural Networks (SBRN 2006)

    Article  Google Scholar 

  91. Zhang, R., Lan, Y., Huang, G.B., Xu, Z.B.: Universal approximation of extreme learning machine with adaptive growth of hidden nodes. IEEE Trans. Neural Netw. Learn. Syst. 23(2), 365–371 (2012). https://doi.org/10.1109/TNNLS.2011.2178124

    Article  Google Scholar 

  92. Huang, G.B.: An insight into extreme learning machines: random neurons, random features and kernels. Cogn. Comput. 6(3), 376–390 (2014). https://doi.org/10.1007/s12559-014-9255-2

    Article  Google Scholar 

  93. Tamura, S., Tateishi, M.: Capabilities of a four-layered feedforward neural network: four layers versus three. IEEE Trans. Neural Netw. 8(2), 251–255 (1997). https://doi.org/10.1109/72.557662

    Article  Google Scholar 

  94. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Real-time learning capability of neural networks. IEEE Trans. Neural Netw. 17(4), 863–878 (2006). https://doi.org/10.1109/TNN.2006.875974

    Article  Google Scholar 

  95. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: a new learning scheme of feedforward neural networks. In: 2004 IEEE International Joint Conference on Neural Networks, vol. 2, pp. 985–990. IEEE Cat. No.04CH37541 (2004). https://doi.org/10.1109/IJCNN.2004.1380068

  96. Bartlett, P.L.: The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network. IEEE Trans. Inf. Theory 44(2), 525–536 (1998). https://doi.org/10.1109/18.661502

    Article  MathSciNet  MATH  Google Scholar 

  97. Zhu, Q.Y., Qin, A., Suganthan, P., Huang, G.B.: Evolutionary extreme learning machine. Pattern Recogn. 38(10), 1759–1763 (2005). https://doi.org/10.1016/j.patcog.2005.03.028

    Article  MATH  Google Scholar 

  98. Rao, C., Mitra, S.K.: Generalized Inverse of Matrices and Its Applications. Wiley Probability and Statistics Series, New York (1971)

    MATH  Google Scholar 

  99. Ben-Israel, A., Greville, T.N.E.: Generalized Inverses: Theory and Applications. Springer, New York (2003). https://doi.org/10.1007/b97366

  100. Campbell, S., Meyer, C.: Generalized Inverses of Linear Transformations. Society for Industrial and Applied Mathematics (2009). https://doi.org/10.1137/1.9780898719048

  101. Xin, J., Wang, Z., Qu, L., Wang, G.: Elastic extreme learning machine for big data classification. Neurocomputing 149(Part A), 464–471 (2015). https://doi.org/10.1016/j.neucom.2013.09.075. (Advances in neural networks Advances in Extreme Learning Machines)

    Article  Google Scholar 

  102. Peng, Y., Kong, W., Yang, B.: Orthogonal extreme learning machine for image classification. Neurocomputing 266(Supplement C), 458–464 (2017). https://doi.org/10.1016/j.neucom.2017.05.058

    Article  Google Scholar 

  103. Green, R.O., Eastwood, M.L., Sarture, C.M., Chrien, T.G., Aronsson, M., Chippendale, B.J., Faust, J.A., Pavri, B.E., Chovit, C.J., Solis, M., Olah, M.R., Williams, O.: Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Remote Sens. Environ. 65(3), 227–248 (1998). https://doi.org/10.1016/S0034-4257(98)00064-9

    Article  Google Scholar 

  104. Kunkel, B., Blechinger, F., Lutz, R., Doerffer, R., van der Piepen, H., Schroder, M.: ROSIS (Reflective Optics System Imaging Spectrometer)—a candidate instrument for polar platform missions. In: Proc. SPIE 0868, Optoelectronic Technologies for Remote Sensing from Space, 13 April 1988. https://doi.org/10.1117/12.943611

  105. Xu, X., Li, J., Plaza, A.: Fusion of hyperspectral and LiDAR data using morphological component analysis. In: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, pp. 3575–3578 (2016). https://doi.org/10.1109/IGARSS.2016.7729926

  106. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014). arXiv:1412.6980

  107. Ghamisi, P., Plaza, J., Chen, Y., Li, J., Plaza, A.J.: Advanced spectral classifiers for hyperspectral images: a review. In: IEEE Geoscience and Remote Sensing Magazine, vol. 5, no. 1, pp. 8–32, March 2017. https://doi.org/10.1109/MGRS.2016.2616418

    Article  Google Scholar 

  108. Buckner, J.L.: NASA Advanced Component Technology Program, investments in remote sensing technologies. In: Proceedings of 2003 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2003), vol. 1, pp. 494–496. IEEE Cat. No. 03CH37477 (2003). https://doi.org/10.1109/IGARSS.2003.1293820

  109. Lucas, R., Rowlands, A., Niemann, O., Merton, R.: Advanced Image Processing Techniques for Remotely Sensed Hyperspectral Data. Springer Berlin Heidelberg, Berlin, Heidelberg (2004). https://doi.org/10.1007/978-3-662-05605-9-2

  110. Plaza, J., Perez, R., Plaza, A., Martinez, P., Valencia, D.: Parallel morphological/neural classification of remote sensing images using fully heterogeneous and homogeneous commodity clusters. In: 2006 IEEE International Conference on Cluster Computing, Barcelona, pp. 1–10 (2006). https://doi.org/10.1109/CLUSTR.2006.311867

  111. Sánchez, S., Ramalho, R., Sousa, L., Plaza, A.: Real-time implementation of remotely sensed hyperspectral image unmixing on gpus. J. Real-Time Image Proc. 10(3), 469–483 (2015). https://doi.org/10.1007/s11554-012-0269-2

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by Ministerio de Educación (Resolución de 26 de diciembre de 2014 y de 19 de noviembre de 2015, de la Secretaría de Estado de Educación, Formación Profesional y Universidades, por la que se convocan ayudas para la formación de profesorado universitario, de los subprogramas de Formación y de Movilidad incluidos en el Programa Estatal de Promoción del Talento y su Empleabilidad, en el marco del Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016. This work has also been supported by Junta de Extremadura (decreto 297/2014, ayudas para la realización de actividades de investigación y desarrollo tecnológico, de divulgación y de transferencia de conocimiento por los Grupos de Investigación de Extremadura, Ref. GR15005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Mario Haut.

Additional information

This work has been supported by Ministerio de Educación (Resolución de 26 de diciembre de 2014 y de 19 de noviembre de 2015, de la Secretaría de Estado de Educación, Formación Profesional y Universidades, por la que se convocan ayudas para la formación de profesorado universitario, de los subprogramas de Formación y de Movilidad incluidos en el Programa Estatal de Promoción del Talento y su Empleabilidad, en el marco del Plan Estatal de Investigación Científica y Técnica y de Innovación 2013–2016. This work has also been supported by Junta de Extremadura (decreto 297/2014, ayudas para la realización de actividades de investigación y desarrollo tecnológico, de divulgación y de transferencia de conocimiento por los Grupos de Investigación de Extremadura, Ref. GR15005).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haut, J.M., Paoletti, M.E., Plaza, J. et al. Fast dimensionality reduction and classification of hyperspectral images with extreme learning machines. J Real-Time Image Proc 15, 439–462 (2018). https://doi.org/10.1007/s11554-018-0793-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-018-0793-9

Keywords

Navigation