
HAL Id: hal-01929171
https://univ-rennes.hal.science/hal-01929171

Submitted on 14 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On predicting the HEVC intra quad-tree partitioning
with tunable energy and rate-distortion

Alexandre Mercat, Florian Arrestier, Maxime Pelcat, Wassim Hamidouche,
Daniel Menard

To cite this version:
Alexandre Mercat, Florian Arrestier, Maxime Pelcat, Wassim Hamidouche, Daniel Menard. On pre-
dicting the HEVC intra quad-tree partitioning with tunable energy and rate-distortion. Journal of
Real-Time Image Processing, 2019, 16 (1), pp.161-174. �10.1007/s11554-018-0809-5�. �hal-01929171�

https://univ-rennes.hal.science/hal-01929171
https://hal.archives-ouvertes.fr

Alexandre

Mercat

·

Florian

Arrestier

·

Maxime

Pelcat

·

Wassim

Hamidouche

·

Daniel

Menard

On Predicting the HEVC Intra Quad-Tree Partitioning
with Tunable Energy and Rate-Distortion

Abstract Future evolutions of the Internet of Things
(IoT) are likely to boost mobile video demand to an un-
precedented level. A large number of battery-powered
systems will then integrate an High Efficiency Video
Coding (Hevc) codec, implementing the latest video en-
coding standard from MPEG, and these systems will
need to be energy efficient. Constraining the energy con-
sumption of Hevc encoders is a challenging task, espe-
cially for embedded applications based on software en-
coders. The most efficient approach to manage the en-
ergy consumption of an Hevc encoder consists in opti-
mizing the quad-tree partitioning and balance compres-
sion efficiency and energy consumption. The quad-tree
partitioning splits the image into encoding units of vari-
able sizes. The optimal size for a unit is content depen-
dent and affects the encoding efficiency. Finding this op-
timal repartition is complex and the energy required by
the so-called Rate-Distortion Optimization (RDO) pro-
cess dominates the encoder energy consumption.

For the purpose of budgeting the energy consumption
of a real-time Hevc encoder, we propose in this paper a
variance-aware quad-tree prediction that limits the ener-
getic cost of the RDO process. The predictor is moreover
adjustable by two parameters, (∆,∆), offering a trade-
off between energetic gains and compression efficiency.
Experimental results show that the proposed energy re-
duction scheme is able to reduce the energy consumption
of a real-time Hevc encoder by 45% to 62% for a bit rate
increase of respectively 0.49% and 3.4%. Moreover, the
flexibility offered by parameters (∆,∆) opens new op-
portunities for energy-aware encoding management.

Alexandre Mercat, Florian Arrestier, Maxime Pelcat, Wassim
Hamidouche, Daniel Menard
INSA Rennes, IETR, UMR CNRS 6164, UEB
20 Avenue des Buttes de Coesmes, 35708 Rennes, France
Tel.: +33-223-238200
Fax: +33-223-238396
E-mail: firstname.lastname@insa-rennes.fr

Maxime Pelcat
Institut Pascal, CNRS UMR 6602, Clermont-Ferrand, France

1 Introduction

With the progress of microelectronics, many embedded
applications now encode and stream live video contents.
The Hevc [25, 24, 33] standard represents the state-of-
the-art in video coding. When compared with the pre-
vious ISO/IEC Moving Picture Experts Group (Mpeg)
Advanced Video Coding (AVC), Hevc Main profile re-
duces the bit rate by 50% on average for a similar objec-
tive video quality [26, 28]. This gain reduces the energy
needed for transmitting video. On the other hand, the
computational complexity of the encoders has been sig-
nificantly increased. The additional complexity brought
by Hevc is mostly due to the new quad-tree block parti-
tioning structure of Coding Tree Units (CTUs) and the
increase in the number of Intra prediction modes, which
exponentially impact the Rate-Distortion (RD) search
process [16].

The main limitation of recent embedded systems,
particularly in terms of computational performance,
comes from the bounded energy density of batteries.
This limitation is a major constraint for image and video
applications, video encoding and decoding being for in-
stance the most energy-consuming algorithms on smart
phones [3]. A large share of systems are likely to integrate
the Hevc codec in the long run and will require to be en-
ergy efficient, and even energy aware. As a consequence,
energy consumption represents a serious challenge for
embedded Hevc real-time encoders. For both hardware
and software codecs, a solution to reduce energy con-
sumption is to decrease the computational complexity
while controlling compression quality losses. By nature,
hardware and software encoders differ in terms design
choices [12]. This paper puts the focus on software Hevc
encoders, however, by reducing the amount of quad-tree
configurations to process, this work is promising direc-
tion also in the context of hardware encoders.

To reduce the computational complexity of Hevc en-
coders, several algorithmic solutions have been proposed
at the level of quad-tree partitioning, which test less par-

2

titioning configurations. Exhaustive search solution (op-
timal) test all possible partitioning configurations and
select the one that minimizes the RD-cost. This process
is the most time consuming operation in a Hevc en-
coder and thus it offers the biggest opportunity of com-
plexity reduction (up to 78%) [16]. Complexity reduc-
tion solutions at the quad-tree level consist in predicting
the adequate level of partitioning that offers the lowest
RD-cost. Authors in [23] and [4] propose to use the cor-
relation between the minimum depth of the co-located
CTUs in the current and previous frames to skip comput-
ing some depth levels during the RDO process. Authors
in [1, 7, 31, 11, 19] use CTU texture complexities to pre-
dict the quad-tree partitioning. However, these solutions
are based on reducing the complexity of the best effort
(i.e. non-real-time) Hevc test Model (HM) encoder and
do not offer the possibility to tune compression qual-
ity and complexity. Moreover, a real-time encoder such
as Kvazaar is up to 10 times faster than HM [30]. The
performance of state-of-the-art solutions based on HM
are biased because they are measured comparatively to
a gigantic compression time. The complexity overhead
of state of the art solutions is thus comparatively higher
in the context of a real-time encoder. Published results
can thus not be directly applied to reduce the energy
consumption in a real-time encoder without knowledge
of complexity overhead.

This paper proposes a new lightweight method to pre-
dict the CTU quad-tree partitioning with the objective
to budget the energy consumption of a real-time Hevc
encoder. The proposed approach is used to limit the re-
cursive RDO process, which drastically impacts the en-
ergy consumption of Hevc Intra encoder [16]. Compared
to our previous work [17] and existing methods, the pre-
dictor is also made adjustable, based on two parame-
ters that provide a trade-off between energy consump-
tion and coding efficiency. The proposed energy reduc-
tion technique exploits the correlation between the CTU
partitioning and the variance of the Coding Unit (CU)
luminance samples. Compared to state-of-the-art solu-
tions, the originality of the presented work comes from
its focus on energy consumption, real-time encoders and
adjustable energy gains targeted towards energy budget-
ing.

The rest of this paper is organized as follows. Sec-
tion 2 presents an overview of the Hevc intra encoder
and goes through State-of-the-Art methods of complex-
ity reduction techniques. Section 3 details the proposed
algorithm of quad-tree partitioning prediction based on
variance studies. The proposed energy reduction scheme
and its performance are investigated in Section 4. Finally,
Section 5 concludes the paper.

2 Related works

2.1 HEVC Encoding and its Rate Distorsion
Optimisation

An Hevc encoder is based on a classical hybrid video
encoder structure that combines Inter-images and Intra-
image predictions. The Hevc standard defines units that
refer to parts of the produced bitstream, and blocks that
refer to parts of the images to encode. While encoding
in Hevc, each frame is split into equally-sized Coding
Tree Units (CTUs) (Figure 1). Each CTU is then divided
into Coding Units (CUs), appearing as nodes in a quad-
tree. CUs gathers the coding information of a block of
luminance and 2 blocks of chrominance. In Hevc, the
size, in luminance pixels, of CUs is equal to 2N×2N with
N ∈ {32, 16, 8, 4}. The Hevc encoder first predicts the
units from their neighbourhood (in space and time). To
perform the prediction, CUs may be split into Prediction
Units (PUs) of smaller size. In intra prediction mode,
PUs are square and have a luminance size of 2N × 2N
(or N×N only when N = 4), which can be associated to
a quad-tree depth range d ∈ {0, 1, 2, 3, 4}, as illustrated
in Figure 1.

The Hevc intra-frame prediction is complex and sup-
ports in total Npm = 35 modes performed at the level
of PU including planar (surface fitting) mode, DC (flat)
mode and 33 angular modes [24]. Each mode correspond
to a different assumption on the gradient in the image. To
achieve the best RD performance, the encoder performs
an exhaustive search process, named Rate-Distortion
Optimization (RDO), testing all possible combinations
of quad-tree partitioning and the 35 Intra prediction
modes. The Quantization Parameter (QP) impacts the
RDO process to tune quality and bitrate. For a given
CTU, an RDO exhaustive search tests Nt different de-
compositions and prediction modes with:

Nt = Npm×
4∑
d=0

22d = 35×(1+4+16+64+256) = 11935

(1)

This set of tests is the main cause of the Hevc encod-
ing complexity and the target of the energy optimization
process developed in this paper.

2.2 Studied HEVC Encoder

For embedded applications, hardware encoding solu-
tions [21] consume much lower energy than software so-
lutions. However, when the considered system does not
embed a hardware coprocessor, a software Hevc en-
coder [9, 18, 29, 27] can be used, including the Hevc
reference software model (HM). HM is widely used, as
it has been designed to achieve an optimal coding ef-
ficiency (in terms of RD). However, the computational

3

64

64

32

32

16

16

8
8

Depth 0: CU 64x64

Depth 1: CU 32x32

Depth 2: CU 16x16

Depth 3: CU 8x8

Depth 4: CU 8x8 with PU 4x4

Fig. 1 Quad-tree structure of a Coding Tree Unit (CTU),
divided into Coding Units (CUs) and Prediction Units (PUs)
(dimensions in luminance pixels).

complexity of HM is high and not adapted to embedded
applications. To fill this gap, the x265, f265 and Kvaazar
Hevc software encoders provide real-time encoding so-
lutions, leveraging on parallel processing and low-level
Single Instruction Multiple Data (Simd) optimizations
for different specific platforms.

This study is based on the Kvaazar Hevc encoder
[27] for its real-time encoding capacity. The conclusions
of this study can however be extended to the other real
time software or hardware encoders, as they all rely on
a classical RDO process to reach acceptable compression
performance.

2.3 Complexity Reduction of the Quad-Tree
Partitioning

As shown in [16], in a real-time software Hevc Intra
encoder, two specific parts of the encoding algorithm
provide the highest opportunities of energy reduction;
the Intra prediction (IP) level offers at best 30 % of en-
ergy reduction whereas the CTU quad-tree partitioning
level has a potential of energy reduction of up to 78%.
Previous studies on low complexity CTU quad-tree par-
titioning can be classified into two categories: the early
termination complexity reduction techniques which are
applied during the RDO process to dynamically termi-
nate processing when future gains are unlikely, and the
prediction-based complexity reduction techniques which
are applied before starting the RDO process and pre-
dict the quad-tree partitioning with lower complexity
processing. In this paper, we focus on prediction-based
complexity reduction techniques.

Authors of [23, 34, 4] propose to reduce the complex-
ity of the Hevc encoder by skipping some depth levels

of the quad-tree partitioning. The skipped depths are
selected based of the correlation between the minimum
depth of the co-located CTUs in the current and previ-
ous frames. Results in [4] show an average time savings of
45% for a Bjøntegaard Delta Bit Rate (BD-BR) increase
of 1.9%. We reimplemented in the real-time software en-
coder Kvazaar two complexity reduction techniques ex-
tracted from [23] and [34]. For the algorithm from [23],
we obtain with our implementation an average of energy
reduction of 37.9% for a BD-BR increase of 0.54%. Us-
ing [34], our results show that the complexity reduction
technique reduces the energy consumption of 30% in av-
erage for a BD-BR increase of 0.12%.

Authors of [22] present an Intra CU size classifier
based on data-mining with an offline classifier training.
The classifier is a three-node decision tree using mean
and variance of CUs and sub-CUs as features. This al-
gorithm reduces the coding time by 52% at the expense
of bit rate increase of 2%.

Works in [1, 7, 31, 11, 19] use CTU texture complex-
ities to predict the quad-tree partitioning. Min et al. [1]
propose to decide if a CU has to be split, non-split or
if it is undetermined, using the global and local edge
complexities in four different directions (horizontal, ver-
tical, 45◦ and 135◦ diagonals) of CU and sub-CUs. This
method provides a computational complexity reduction
of 52% for a BD-BR increase of 0.8%. Feng et al. [7]
use information entropy of CUs and sub-CUs saliency
maps to predict the CUs size. The method reduces the
complexity of 37.9% for a BD-BR increase of 0.62%.

Khan et al. [11] propose a method using texture vari-
ance to efficiently predict the CTU quad-tree decompo-
sition. The authors model the Probability Density Func-
tion (PDF) of variance populations by a Rayleigh dis-
tribution to estimate some variance thresholds and de-
termine the quad-tree partitioning. This method reduces
the complexity by 44% with a BD-BR increase of 1.27%.
Our experiments have shown that the assumption of a
Rayleigh distribution is not verified in many cases. For
this reason, our proposed method, while based on vari-
ance, does not consider the Rayleigh distribution and
thus differs from [11].

In [20], Penny et al. propose the first Pareto-based
energy controller for an Hevc encoder. From [20] are
extracted the following results which are the average re-
sults on one sequence of each video class (A, B, C, D et
E). For an energy reduction from 49% to 71%, authors
achieve a BD-BR increase between 6.84% and 25%, re-
spectively.

Except [20], none of the presented works offer features
to adapt quality and complexity. Including [20], these
studies are all based on complexity reduction of the HM
software encoder and their performances do not translate
to real-time encoders.

4

3 CTU Variance Analysis for Predicting an
HEVC Quad-Tree Partitioning

The aim of this paper is to replace the brute force scheme
usually employed in Hevc encoders by a low complexity
algorithm which predicts the CTU partitioning for Intra
prediction without testing all possible decompositions.
Following a bottom-up approach (from CU 4× 4 to 32×
32), the main idea is to determine whether a CU at a
current depth d ∈ [1, 4] should be encoded or need to be
further merged into lower depth d− 1.

It has been already shown that the CTU partition-
ing during the RDO process is highly linked to the QP
value and the texture complexity which can be statis-
tically represented by the variance of blocks in Intra
coding [11, 1, 31]. Figure 2 shows the CU boundaries
of the 6th frame of BasketballDrive video sequence. It
is noteworthy that the regions with the lowest variance
(smooth) tend to be encoded with larger blocks, as il-
lustrated by the green circle in Figure 2, while the blue
circle shows a region with a high variance (high local
activity), which are encoded with smaller blocks. This
existing correlation between the pixel’s values of a block
(variance) and its encoding decomposition can be used
to predict the quad-tree decomposition of a CTU and
thus reduce drastically the encoding complexity.

Low variance
Large blocks

High variance
Small blocks

Fig. 2 Quad-tree partitioning of the 6th HEVC intra coded
frame of the BasketballDrive sequence. The green (resp. blue)
circle shows that the lowest (resp. highest) variance regions
tend to be encoded with larger (resp. smaller) units.

3.1 Variance-Based Decision for Quad-Tree Partitioning

To study how to predict the quad-tree partitioning from
the variance values of CU luminance samples, two pop-
ulations of CUs at a current depth d are defined: Merged
(M) and Non Merged (NM). The CU belongs to the Non
Merged population when the full RDO process chooses
to encode the CU at the current depth d, while the CU
belongs to the Merged population when the RDO process
choose to encode the CUs at a new depth d′ with d′ < d.
However, with a bottom-up approach (i.e. d from 4 to

1), all CUs of the quad-tree decomposition of all CTUs
can be classified into one of these two populations.

In the following paragraphs, two approaches are in-
vestigated to classify CUs in one of these two populations
based on the variance criteria.

3.1.1 PDF approach

Figure 3 shows the PDFs of the variance of the CU
8 × 8 of the two populations for the 6th frame of Bas-
ketballDrive video sequence. Statistically, for two PDFs
with sufficiently distinct populations, a threshold can be
derived such that, given an element — here the vari-
ance of a 8 × 8 CU — the element can be classified to
one of the two populations. The classification threshold
is given by the abscissa of the intersection of the two
PDFs, represented by the green dotted line in Figure 3.
The threshold is determined such as to minimize the miss
detection and false alarm probability.

Variance
0 500 1000 1500 2000 2500 3000 3500 4000

P
D

F

#10-3

0

1

2

3

4

5

6

7

PDF of the Merge population
PDF of the Non Merge population

Fig. 3 Probability Density Functions (PDFs) of CUs 8 × 8
variances of the two populations Merged and Not Merged of
the sixth frame of the sequence BasketballDrive. A variance
threshold (the green dotted line) can be used to classify a
block into one of the two populations.

3.1.2 Cumulative Distribution Function (CDF)
approach

An alternative approach consists in using only the CDF
of the Non Merged population to decide whether a CU
has to be merged or not. In our case, the CDF defines
the probability of the variance population of a given CU
size being less or equal to a given value.

Figure 4 shows the CDFs of CU variances depend-
ing on CU size for the sixth frame of the BasketballDrive
video sequence. The CDF curves show that the probabil-
ity for a CU size to be selected during the RDO process
decreases when the variance of the CU increases. In other
terms, it is rare for a CU to have a variance greater than
a certain threshold. From this observation, a variance
threshold υth(∆, d) for each depth d can be extracted
from the inverse CDF curve for a specific probability ∆.
For example, Figure 4 shows that 80% (∆ = 0.8) of CUs
8×8 (d = 3) have a variance less than 555 represented by
the green dotted lines in Figure 4. ∆ is the percentage of

5

Fig. 4 CDFs of the Merged population depending of CU size
for the sixth frame of the sequence BasketballDrive. Under a
specific probability ∆, a variance threshold can be extracted
from the inverse CDF curve to classify a block as Merged.

coding units whose variance is under the threshold υth,
i.e. the variance threshold that triggers unit split.

Table 1 Variance thresholds υth(∆, d) of the 50th frame of
two example sequences versus d and ∆

Sequence name ∆ d = 1 d = 2 d = 3 d = 4

PeopleOnStreet

0.3 31.8 31.1 51.4 97.0
0.5 40.8 40.1 66.4 127.0
0.7 49.8 50.1 84.4 166.0
0.9 58.8 61.1 109.4 219.0

ParkScene

0.3 41.2 24.3 29.1 53.5
0.5 51.2 31.3 37.1 70.5
0.7 62.2 40.3 48.1 90.5
0.9 74.2 50.3 62.1 117.5

Table 1 shows the thresholds υth(∆, d) for d ∈
{1, 2, 3, 4} extracted from the CDFs using the second
previous approach for the 50th frame of the two sequence
PeopleOnStreet and ParkScene. The Table illustrates the
large variation of the threshold value across different
video contents. In fact, the thresholds rely on the video
contents and thus have to be determined on-the-fly from
the Learning Frame (FL).

3.2 Variance Threshold Modelling

Since the thresholds have to be adapted based on the
video content, they have to be determined on-the-fly
from learning frames. The modelling of these thresh-
olds can be conducted using variance PDFs with an ap-
proximation of the distribution based on common known
probability distribution or directly using population fea-
tures. Neither of those two approaches were conclusive
in our experimental results.

However, an approximation of the thresholds directly
from Non Merged population features provides good re-
sults for the CDF curve. In Figure 5, the variance thresh-
olds υth(d = 3, ∆ = 0.8) is plotted versus the mean
µυ(d = 3) and the standard deviation σV (d = 3) of
CUs 8× 8 variances. The values are extracted for 4 QP

values 22, 27, 32 and 37 of 100 frames selected randomly
from 5 different sequences: BasketballDrive, BQTerrace,
Cactus, ParkScene, PeopleOnStreet and Traffic. Similar
results are obtained for other CU sizes. The results show
that for a fixed value of ∆, υth(∆, d) depends linearly on
µυ(d) and standard deviation συ(d), and this indepen-
dently of the QP value.

Fig. 5 Variance thresholds υth(d = 3,∆ = 0.8) versus the
mean µυ(d = 3) and the standard deviation σV (d = 3) of CUs
8×8 variances. For a fixed value of ∆, the variance threshold
values form a plane (independently of the QP value).

From this observation, υth(∆, d) can be modeled us-
ing the following linear relation:

υth(∆, d) = a(∆, d) ·µυ(d) + b(∆, d) ·συ(d) + c(∆, d) (2)

where a(∆, d), b(∆, d) and c(∆, d) are coefficients mod-
elling the threshold for each probability ∆ and for each
depth d. The coefficients are computed offline for each
∆ and d values using a linear regression on all frames
of BasketballDrive, BQTerrace, Cactus,ParkScene, Peo-
pleOnStreet and Traffic for 4 values of QP 22, 27, 32 and
37.

The Coefficient of Determination (Rsq) is a metric
that quantifies the accuracy of a predicting model. It
falls between 0 and 1 and the more the Rsq is close to
1, the more the predicted data fits the actual data. Rsq
is defined by Equation (3) where ŷ represents the esti-
mated values of y, n is the number of y value used for
the measure and ȳ is the mean of y.

Rsq = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

(3)

Table 2 summarizes the average of the Rsq for ∆ ∈
{0.3, 0.35, . . . , 0.9} for each depth d. The average Rsq
value is ever larger than 72%, which confirms that the
model fits the υth(∆, d), regardless of the video content
and QP value.
Summarizing the above analysis:

– Thresholds from CDFs of variances can be predicted
from reference Learning Frames (FL).

– Look-Up Tables (LUTs) requires slight computation
and memory overhead for the determination of the
threshold. The computation overhead of the proposed

6

Table 2 Rsq average of Vth(∆, d) modelling

Depth Average Rsq

d = 0 0.8774
d = 1 0.8482
d = 2 0.7214
d = 3 0.8942
d = 4 0.9436

method presented in section 4 is between 1% and
1.9% depending on the QP and video sequence.

– The prediction of thresholds is independent from the
QP value (Figure 5).

– Threshold modelling is accurate with a mean Rsq of
0.86 for the different depths.

– Thresholds can be precomputed according to ∆ value
as a parameter.

The next section describes the proposed algorithm to
predict the CTU partitioning using a variance criterion
and the thresholds υth(∆, d).

3.3 Prediction Algorithm for CTU Partitioning

A description of the CTU partitioning is needed to ex-
plicitly depict the prediction of the quad-tree and then
force the encoder to only encode this specific decom-
position. Figure 6a illustrates the chosen representation
of a CTU partitioning in the form of a CTU Depth
Map (Cdm) matrix 8 by 8. Each element of the matrix
represents the depth d of a 8 by 8 square samples of the
CTU. Since the CTU size is 64 × 64 and the minimum
size of CU is 4 × 4, a matrix 8 by 8 can be used to de-
scribe all partitioning of a CTU. A depth of 4 in the Cdm
corresponds to 4 CU 4× 4 in the CTU decomposition.

3

3

2

2

1

1

1

1

3

3

2

2

1

1

1

1

2

2

3

3

1

1

1

1

2

2

3

4

1

1

1

1

1

1

1

1

2

2

2

2

1

1

1

1

2

2

2

2

1

1

1

1

2

2

2

2

1

1

1

1

2

2

2

2

(a) Cdm matrix of the CTU
partitioning of Figure 1.
Each element of the matrix
represents the depth of an
8 by 8 pixel square in the
CTU.

2

2

2

2

1

1

1

1

2

2

2

2

1

1

1

1

2

2

3

3

1

1

1

1

2

2

3

3

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

(b) Rcdm matrices of the
Cdm illustrated Figure 6a.
In grey are repsented the
blocks merged by the Rcdm
algorithm.

Fig. 6 Cdm and its associate Rcdm matrices of the CTU
partitioning of Figure 1

For a given CTU, let υd(i, j) be the variance of the
luminance sample blocks of size 26−d×26−d at the depth

level d and the local coordinates (i, j) into the CTU as
illustrated in Figure 7.

Fig. 7 υd(i, j): variance of the luminance sample blocks of
size 26−d × 26−d of a CTU versus the depth level d.

Algorithm (1) describes our proposed algorithm that
predicts the CTU partitioning. The algorithm takes as
inputs the luminance samples of CTU and the table of
thresholds Vth previously computed by Equation (2) to
generate the Cdm associated to the input CTU. In other
terms, the goal of this algorithm is to use the variances
of the luminance samples to determine the Cdm matrix
of the CTU. Then, the encoder only uses the predicted
depths instead of RDO to encode the video, reducing
significantly the complexity.

First of all, the full Cdm is initialized with the depth
value 4 (line 1) and all the variances υ4(x, y) of the CU
4 × 4 (line 2) are computed using Equation (4) where
px,y(i, j) is the luminance component of the samples at
the coordinate (i, j) in the CU 4×4 at the position (x, y)
and p̄x,y the average value of the block.

υ4(x, y) =
1

16

3∑
i=0

3∑
j=0

(px,y(i, j)− p̄x,y)2 (4)

Then, the algorithm explores the CTU decomposi-
tion with a bottom-up approach: from d = 4 to d = 1
(line 3). For the current depth d, the algorithm browses
the Cdm (lines 5-6) taking the block size δ in the Cdm
(line 4) into account. Afterwards, the algorithm tests if
the 4 neighbor blocks in the Z-scan order have the same
depth d, except when d = 4 (line 7). The algorithm does
not try to merge neighbor blocks if they have different
depths. Since the algorithm is bottom-up, there is no
need to test the condition when d = 4 because the Cdm
is initialized at d = 4 which is the starting depth of the
algorithm. If the previous condition is true, then the al-
gorithm tests whether the blocks have to be merged or
not using the variance criteria (line 9) previously de-
tailed in Section 3.1. If the 4 blocks variances υd are

7

Algorithm 1: Cdm Generator

Data: Samples of CTU, Vth(∆, d)
Result: Cdm matrix

1 Cdm(x, y) = 4,∀x, y ∈ [0, 7] ; // Initialization

2 Compute: υ4(x, y),∀x, y ∈ [0, 15] ; // cf Eq. 4

3 for (d = 4; d > 0; d−−) do
4 δ = max(2d−2, 1); // Cdm matrix block size

5 for (y = 0; y < 8; y += δ) do
6 for (x = 0;x < 8;x += δ) do

// Test if the 4 neighbor blocks
have the same depth d when d < 4

7 if ((Cdm(x, y) = d &&
Cdm(x+ δ, y) = d &&
Cdm(x, y + δ) = d &&
Cdm(x+ δ, y + δ) = d) || (d = 4))
then

// Test if the variances of
blocks are lower than the
threshold

8 x′ = x/(23−d); y′ = y/(23−d); // Var

idx

9 if (υd(x′, y′) < Vth(∆, d) &&

υd(x′ + 1, y′) < Vth(∆, d) &&
υd(x′, y′ + 1) < Vth(∆, d) &&
υd(x′ + 1, y′ + 1) < Vth(∆, d)) then

// Block merging in the Cdm

10 Cdm(x′ + i, y′ + j) = d− 1,
∀i, j ∈ [0, δ − 1] ;

11 Compute: υd(x′/2, y′/2); // cf

Eq. 5

lower than the given threshold Vth(∆, d) then the blocks
are merged and the corresponding elements in the Cdm
are set to d− 1 (line 10) and the variance of the merged
block is calculated three times using the combined vari-
ance Equation 5.

υa∪b =
(2n− 1)(υa + υb) + n(µa − µb)2

4n− 1
(5)

Equation (5) [5] computes the variance of two sets
of data a and b containing the same number of observa-
tions n with µ and υ corresponding to the mean and the
variance of the specified data set, respectively.

3.4 Relationship between the Prediction Performance
and the ∆ Parameter

As described in Section 3.3, Algorithm (1) takes as input
a set of variance thresholds υth corresponding to the pa-
rameter ∆. As detailed in Section 3.1, the parameter ∆
is the normalized probability of Non Merged population
with a variance less or equal to its associated threshold
υth(∆, d). The following section is a baseline study of the
impact of parameter ∆.

3.4.1 The Cdm Distance for Performance Analysis

The main objective of Algorithm (1) is to generate a
Cdm that minimises the prediction error when compared
to what the full RDO process would generate. To eval-
uate the accuracy of our predictions, we define the nor-
malized L1 distance Γ between two Cdms in terms of
depth levels as follow:

Γ (A,B) =

[
7∑
i=0

7∑
j=0

|A(i, j)−B(i, j)|

]
/64 (6)

where A and B are the two compared Cdms. In other
terms, the metric Γ (A,B) measures the average gap in
number of depth levels between two Cdms A and B of a
given CTU. Let use Figures 6 as example, the distance
Γ between the Cdm Figure 6a and Figure 6b is equal
to Γ = (4 + 1 + 16)/64 = 0.3281. Distance Γ is used
in the following sections to evaluate the accuracy of the
prediction.

3.4.2 Cdm Distance Versus ∆

In Figure 8 are plotted in blue the average and the
standard deviation of Γ∆(P,R) where Γ∆(P,R) is the
distance between the predicted Cdm P and the refer-
ence Cdm R 1, generated by a full RDO process (opti-
mal) according to ∆ ∈ {0.3, 0.35, ..., 0.95}. The results
are extracted from the 100 first frames of the 5 fol-
lowing sequences: BasketballDrive, BQTerrace, Cactus,
ParkScene, PeopleOnStreet and Traffic for 4 QP values:
22, 27, 32 and 37. The more Γ (P,R) is close to 0, the
more precise the predicted Cdm P becomes.

Fig. 8 Averages and standard deviations of Γ∆(P,R), the
distance between the predicted Cdms P and the reference
Cdm R generated by a full RDO process versus ∆. The dis-
tance is minimized, i.e. the predictions accuracy is maximized
for ∆ ∈ [0.6, 0.7].

Figure 8 shows that Γ∆(P,R) has the property of be-
ing convex when plotted over ∆. Furthermore, the low
standard deviations values (< 0.45) of Γ∆(P,R) (rep-
resented by the vertical bars in Figure 8) show that the
results are stable across the video contents and QP value.

1 exhaustive search leading to the optimal solution

8

As can be seen in Figure 8, Γ∆(P,R) is minimized and
thus the accuracy of the predictions is maximized for
∆ ∈ [0.6, 0.7]. Moreover, the value of Γ∆(P,R) is be-
low 0.7 which demonstrates the accuracy of the proposed
predictions.

3.4.3 Decomposing the Cdm Distance into Lower and
Upper Distances

To extend the previous analysis, the distance Γ (A,B)
can be decomposed into two independent distances:
Γ (A,B) and Γ (A,B) complying with Equation (7):

Γ (A,B) = Γ (A,B) + Γ (A,B) (7)

where Γ (A,B) (respectively Γ (A,B)) is called upper dis-

tance (respectively lower distance) and is the normalized
distance between the two Cdms A and B only when the
depth of A is lower (respectively higher) than the depth
of B, as described by Equation (8) (respectively Equa-

tion (9)). Γ (A,B) is called the upper distance as it repre-
sents the fact that the quad-tree decomposition of Cdm
A is shallower than the one of B, i.e the Cdm of A has
lower depth values. The same reasoning can be applied
to Γ (A,B).

Γ (A,B) =

[
7∑
i=0

7∑
j=0

|min (A(i, j)−B(i, j), 0) |

]
/64 (8)

Γ (A,B) =

[
7∑
i=0

7∑
j=0

max (A(i, j)−B(i, j), 0)

]
/64 (9)

In green and red in Figure 9 are plotted the averages
and the standard deviations of respectively Γ∆(P,R)
and Γ∆(P,R), i.e. the upper distance and lower dis-
tance between the predicted Cdm P and the reference
Cdm R generated by a full RDO process with ∆ ∈
{0.3, 0.35, ..., 0.95}. The decomposition of Γ∆(P,R) into

Γ∆(P,R) and Γ∆(P,R) is interesting as it tells the differ-
ence between the two following types of prediction errors:
the error when the predicted depth is lower than the
optimal depth and when the predicted depth is higher
than the optimal depth. Figure 9 shows that Γ∆(P,R)
and Γ∆(P,R) are respectively strictly decreasing and in-
creasing when ∆ increases.

For a low value of ∆, such as ∆ = 0.3 in Figure 9,
the main part of errors is due to low values of depth
in the predicted Cdm P , i.e. Γ∆(P,R) close to 0. In-
deed, as shown by Figure 4, a low value of ∆ implies low
values of thresholds υth(∆, d) which according to Algo-
rithm (1) lead to fewer merges during the Cdm gener-
ation. The resulting Cdm has therefore a finer-grained
splitting and minimizes the prediction errors on small

depth(prediction) < optimal depth
few merges
favors small CU predictions

depth(prediction) > optimal depth
many merges
favors large CU predictions

Fig. 9 Averages and standard deviations of Γ∆(P,R) and
Γ∆(P,R), the upper and lower distance between the pre-

dicted Cdm P and the reference Cdm R generated by a full
RDO process versus ∆.

CUs in the CTU. In contrast, for a high value of ∆, such
as ∆ = 0.95 in Figure 9, the resulting Cdm has a coarser-
grained splitting and minimizes the prediction errors of
large CUs in the CTU.

As a result of the previous analysis, we propose to
force the Hevc encoder to encode between two Cdms:
Cdm∆ and Cdm∆ generated from two different values

of ∆ with ∆ < ∆ to minimize both errors Γ∆(P,R) and
Γ∆(P,R).

3.5 Refinement Algorithm for CTU partitioning

To increase the accuracy of the depth map prediction
with a limited impact on the complexity, a second algo-
rithm is designed that refines the Cdm.

The algorithm, described by Algorithm (2), takes as
input a Cdm matrix from Algorithm (1) and generates
a second Cdm called Refined CTU Depth Map (Rcdm).
The Rcdm is the result of merging all groups of four
neighboring blocks (in the Z-scan order) having the same
depth in the input Cdm. Algorithm (2) details the pro-
cess as follows.

The first step is to check whether the input Cdm’s
depth is equal to 0, if so then no merge can be applied and
thus the Rcdm is also set to 0 (line 2). If not, the Cdm is
analysed element by element (lines 4-5). Due to the fact
that a depth of 4 in a Cdm corresponds to 4 CUs 4× 4,
they are always merged to a depth 3 and thus the value
in the Rcdm is automatically set to 3 (line 7). For the
general case (i.e d ∈ 1, 2, 3), if the evaluated element in
the matrix correspond to the fourth block (in the Z-scan
order) of the given depth d (line 11) and if the 3 others
blocks are of depth d (line 12), then the algorithm fills
the corresponding blocks of the Rcdm with the upper
depth d− 1 (line 13).

Figures 6 show an example of a Cdm (Figure 6a)
and its associated Rcdm (Figure 6b) matrices. The grey
blocks in the Rcdm Figure 6b represent the merged

9

Variance
Computation

Moments
Computation

Thresholds
Computation

Variance
Computation

Depth Maps
Generation

Depth Map
Refinement

Unconstrained
HEVC Encoding

Constrained
HEVC Encoding

Encoded
Frame

Input
Frame

CTU Partitioning

Learning Frame FL?

yes

no

Fig. 10 Diagram of the proposed method. The Learning Frames (FL) are encoded with a full RDO process (unconstrained)

and the block variances of the resulting quad-tree decomposition is used to compute the set of thresholds υth(d) and υth(d).

The constrained frames (FC) use these thresholds to generate two Cdms and constrain the encoder to only apply the RDO
process in the interval formed by the two Cdms.

Algorithm 2: Cdm Refinement

Data: Cdm matrix
Result: Rcdm matrix

1 if Cdm(0, 0) = 0 then
2 Rcdm(x, y) = 0,∀x, y ∈ [0, 7] ;// Set Rcdm at 0

3 else
4 for (y = 0; y < 8; y ++) do
5 for (x = 0;x < 8;x++) do
6 if Cdm(x, y) = 4 then
7 Rcdm(x, y) = 3 // Automatic

merge

8 else
9 d = Cdm(x, y) // Get the depth

10 N = 16/2d // Offset definition

// Test if it is the last blocks
in the Z-scane order for the
depth d

11 if ((x % N) = N
2) && ((y % N) =

N
2) then

// Test if the three other
blocks have the same depth

12 if (Cdm(x− N
2 , y) = d &&

Cdm(x, y − N
2) = d &&

Cdm(x− N
2 , y −

N
2) = d) then

13 Rcdm(x+ i, y + j) = d,

∀i, j ∈
[
0, N2

]
; // Fill the

Rcdm

blocks. The next section describes our proposed energy
reduction scheme.

4 Using Quad-Tree Partitioning Prediction to
Reduce the Encoder Energy Consumption

To reduce the energy consumption of Hevc encoder, we
propose to limit the exhaustive search of the RDO pro-

cess on the CTU quad-tree decomposition. Our proposed
energy reduction technique aims to predict the coding-
tree partitioning from video frame content properties.
We propose a variance-aware quad-tree partitioning pre-
diction.

To limit the exploration of the quad-tree decomposi-
tion of a CTU, two Cdms, i.e. refined upper quad-tree
constraints (Rcdm∆) and lower quad-tree constraints
(Cdm∆), are predicted from the variance of its sam-
ples before starting any encoding computation. Then,
the Hevc encoder is forced to only apply the RDO pro-
cess between the two Cdms.

4.1 Overall Algorithm Scheme

Figure 10 presents a high-level diagram of our overall
algorithm scheme. Firstly, the video sequence is split into
Groups of Frames (GOF).

The first frame of each GOF, called Learning Frame
(FL) is encoded with a full RDO process. From this en-
coding are extracted the variances υd for each depth
d ∈ {1, 2, 3, 4} selected during the full RDO process.
Then, the two following statistical moments according
the depth d are computed: the means µυd and the
standard deviations συd of the variance populations υd.
Based on two parameters ∆ and ∆, two sets of thresholds

υth(d) and υth(d) are calculated using Equation (2) and

the LUT of the coefficients a(∆, d), b(∆, d) and c(∆, d)
computed off-line (cf. Section 3.2).

The other frames of the GOF, called constrained
frames (FC), are encoded with a limited RDO process.
For each CTU, Algorithm (1) is applied twice using the
two sets of thresholds previously computed from frame
FL. Algorithm (1) takes as input the set of thresholds

υth(d) the first time and υth(d) the second one to gen-
erate respectively the Cdm∆ and Cdm∆. To finish, the
Cdm∆, being the upper quad-tree constraint, is refined
by Algorithm (2) to build Rcdm∆. This refinement pro-

10

cess gives more slack to the constrained depth decision
that will test coarser grain units.

To conclude this section, our proposed energy reduc-
tion scheme takes as input two parameters ∆ and ∆ with
∆ < ∆ to generate the two Cdms: Cdm∆ and Cdm∆
predicted from the variance of its samples. Then, the
Cdm∆ is refined to generate the Rcdm∆. The Cdm∆
and Rcdm∆ constitute a smart interval of quad-tree par-
titioning. The Hevc encoder is then forced to only ap-
ply the RDO process in the interval between Cdm∆ and
Rcdm∆.

4.2 Experimental Setup and Results

The following section gives the experimental setup and
the results obtained for the proposed energy reduction
scheme on a real time Hevc encoder.

4.2.1 Experimental Setup

To conduct the experiments, 17 video sequences [2]
that strongly differ from one another in terms of frame
rate, motion, texture and spatial resolution were used.
All experimentations are performed on one core of
the EmETXe-i87M0 platform from Arbor Technolo-
gies based on an Intel Core i5-4402E processor at 1.6
GHz. The used Hevc software encoder is the real
time Kvazaar [13, 14, 30] in All Intra (AI) configu-
ration. Since the configuration aims to be real-time,
from [16], the Rate-Distortion Optimisation Quantiza-
tion (RDOQ) [10] and the Intra transform skipping [15]
features are disabled. Each sequences is encoded with 4
different QP values: 22, 27, 32, 37 [2].

Bjøntegaard Delta Bit Rate (BD-BR) and Bjøntegaard
Delta Psnr (BD-Psnr) [32] are used to measure the
compression efficiency difference between two encoding
configurations. The BD-BR reports the average bit rate
difference in percent for two encodings at the same qual-
ity: Peak Signal-to-Noise Ratio (Psnr). Similarly, the
BD-Psnr measure the average Psnr difference in deci-
bels (dB) for two different encoding algorithms consid-
ering the same bit rate.

To measure the energy consumed by the platform, In-
tel Running Average Power Limit (Rapl) interfaces are
used to obtain the energy consumption of the CPU pack-
age, which includes cores, IOs, DRAM and integrated
graphic chipset. As shown in [8], Rapl power measure-
ments are coherent with external measurements and [6]
proves the reliability of this internal measure across vari-
ous applications. In this work, the power gap between the
IDLE state and video encoding is measured. The CPU
is considered to be in IDLE state when it spends more
than 90% of its time in the C7 C-states mode. The C7
state is the deepest C-state of the CPU characterized by
all core caches being flushed, the PLL and core clock be-
ing turned off as well as all uncore domains. The power

of the board is measured to 16.7W when the CPU is in
idle mode and goes up to 31W during video encoding in
average. Rapl shows that 72% of this gap is due to the
CPU package, the rest of the power going to the exter-
nal memory, the voltage regulators and other elements
of the board.

4.2.2 Experimental Metrics and Parameters

The performance of the proposed energy reduction
scheme is evaluated by measuring the trade-off between
Energy Reduction (ER) in % and RD efficiency using the
BD-BR and BD-Psnr. ER is defined by Equation (10):

ER =
100

4

∑
QPi∈{22,27,32,37}

ERef (QPi)− Ered(QPi)

ERef (QPi)

(10)

where ERef (QPi) is the energy spent to encode the video
sequence without constraint and Ered(QPi) the energy
to encode the same sequence with our proposed energy
reduction scheme, both with QP = QPi.

Table 3 Configuration of (∆,∆)

Configuration (∆,∆)

C1 (0.90,0.30)
C2 (0.85,0.35)
C3 (0.80,0.40)
C4 (0.75,0.45)
C5 (0.70,0.50)
C6 (0.65,0.55)
C7 (0.60,0.60)

Table 3 summarizes the configurations of (∆,∆)
used to evaluate the performance of the proposed en-
ergy reduction scheme. We vary the couple of param-
eters (∆,∆), starting from the base value (∆,∆) =
(0.60, 0.60) (C7 configuration), corresponding approxi-
mately to the crossing point of curves in Figure 9. As
the error is close to symmetric, we keep the sum ∆+∆
constant until (∆,∆) = (0.30, 0.90) (C1 configuration),
with incremental steps of 0.05.

As detailed in Section 4, the proposed reduction
scheme is composed by two distinct algorithms: Cdm
Generator (Algorithm (1)) and Cdm Refinement (Al-
gorithm (2)). To evaluate the gain of the second one,
each encoding was carried out with and without apply-
ing the Cdm Refinement algorithm. In other words, the
Hevc encoder is forced to only apply the RDO process
between Cdm∆ and Cdm∆ (respectively Rcdm∆) when
the scheme does not apply (respectively apply) the Cdm
Refinement algorithm (see Figure 10).

11

4.2.3 Experimental Results

Figures 11 and 12 show the results in term of BD-BR
and BD-Psnr versus ER of the configurations detailed
in Table 3 when the Cdm Refinement algorithm is and is
not applied. The energy values include the energy over-
head due to the entire energy reduction scheme as the
variance computation. The results of Figures 11 and 12
are the average of the results obtained when applying
our proposed energy reduction scheme on the 17 video
sequences [2]. Moreover, Table 4 details the results for
the 17 different sequences belonging to 5 classes (A, B,
C, D and E) for configurations C7 and C1 (when the
Rcdm algorithm is applied).

Energy Reduction (ER) in %
40455055606570

B
D

-B
R

 i
n
 %

0

2

4

6

8

10

12

C1

C1
C2

C2

C3

C3

C4

C4

C5

C5

C6

C6

C7

C7 BD-BR with RCDM
BD-BR without RCDM

Fig. 11 BD-BR and ER versus (∆,∆) configurations sum-
marized in Table 3.

First of all, the results of Figures 11 and 12 show
that applying the Cdm Refinement algorithm consumes
between 2.1% (C1) and 4.8% (C7) more energy with not
negligible gains of encoding performance. The gains ob-
tained by applying the Cdm Refinement algorithm are
between:

– 1.2% (C1) and 6.7% (C7) in term of BD-BR,
– 0.06 dB (C1) and 0.33 dB (C7) in term of BD-Psnr.

These results confirm the interest of the Cdm Refinement
algorithm, thus the rest of this section is focused only on
the results with the Cdm Refinement algorithm.

Energy Reduction (ER) in %
40455055606570

B
D

-P
S
N

R
 i
n
 d

B

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0 C1

C1
C2

C2

C3

C3

C4

C4

C5

C5

C6

C6

C7

C7 BD-PSNR with RCDM
BD-PSNR without RCDM

Fig. 12 BD-Psnr and ER versus (∆,∆) configurations sum-
marized in Table 3.

The results show that our energy reduction scheme
is able to reduce the energy consumption of the Hevc
encoder from 45% (C1) to 62% (C7). In configuration

C7, an average of 62% of energy reduction is achieved
with a 3.4% BD-BR increase and a quality degradation
of -0.177dB BD-Psnr. Whereas in configuration C1, an
average of 45% of energy reduction is achieved with a
slight BD-BR increase of 0.49% and a quality degrada-
tion of -0.03dB BD-Psnr

Table 4 shows that for the two configuration C7 and
C1, the ER has a range lower than ≈ 6% across the se-
quences with a maximum of 63.76% in RaceHorses and a
minimum of 58.12% in BlowingBubbles for configuration
C7 for example. The variations of ER for all configura-
tions (from C1 to C7), are due to the number of blocks
merged to build the Rcdm∆, which depends on the pre-
diction of the Cdm∆. This decomposition depends on
the texture characteristics of the sequence. This insta-
bility is especially significant for configuration C7 be-
cause this configuration has the most severe constraint,
i.e. the Cdm∆ and Cdm∆ are the same (generated by
the same ∆ value: 0.6). Only the Cdm Refinement algo-
rithm creates a small unpredictable interval between the
two Cdms.

In the other hand, it can be noticed that classes C and
D for the C7 and C1 configurations have less degradation
in terms of BD-BR and BD-Psnr than other classes. The
same results are observed for all configurations (from
C1 to C7). It can be explained by the condition line 7
of Algorithm (1) and the small resolution of these two
classes which tend to have a finer-grained splitting during
the RDO process. Indeed, Algorithm (1) does not try to
merge the block at the current depth if the four neighbor
blocks in the Z-scan order do not have the same depth
that tends to predict more finer-grained splitting.

4.2.4 Comparison with Related Works

Figure 13 presents a comparison between our proposed
energy reduction technique and techniques extracted
from the literature (Section 2). This comparison is unfair
to our method in terms of time/energy, as the complex-
ity overhead of the proposed complexity reduction tech-
niques in literature would be higher in the context of a
real time encoder, thus reducing their complexity reduc-
tion. In a real-time configuration (see 4.2.1), the com-
putational overhead of our proposed method in the real-
time encoder Kvazaar is between 1% and 1.9%. Results
from techniques implemented of HM [22, 4, 11, 7, 1, 20]
and real-time encoder [23, 34] are plotted in red and blue,
respectively. Crosses and circles correspond respectively
to results in term of energy and complexity reductions.

Figure 13 shows that, even with an unfair compar-
ison, the energy reduction technique proposed in this
paper outperforms state of the art both in terms of av-
erage encoding energy/time reduction and compression
efficiency across the different configurations (from C1 to
C7). In configuration C1 for example, our method re-
duces the energy consumption by up to 7% more when
compared to [23] for the same bit-rate degradation of

12

Table 4 BD-BR, BD-Psnr and ER of the proposed energy reduction scheme according to the sequences for configurations
C7 and C1

C7 configuration C1 configuration

Class Sequence name Resolution
Nb

Frame
BD-BR
(in %)

BD-Psnr
(in dB)

ER
(in %)

BD-BR
(in %)

BD-Psnr
(in dB)

ER
(in %)

A Traffic 3840x2048 150 4.59 -0.24 63.11 0.97 -0.05 45.58
A PeopleOnStreet 2560x1600 150 4.28 -0.24 62.12 0.63 -0.04 47.47
B ParkScene 1920x1080 240 4.29 -0.19 58.79 0.92 -0.04 40.67
B Cactus 1920x1080 500 3.71 -0.11 63.53 0.52 -0.02 45.71
B BQTerrace 1920x1080 600 3.56 -0.13 63.19 0.46 -0.02 45.03
B BasketballDrive 1920x1080 500 2.26 -0.15 63.76 0.16 -0.03 48.66
C RaceHorses 832x480 300 3.12 -0.18 62.60 0.42 -0.02 44.47
C BQMall 832x480 600 1.88 -0.13 61.78 0.12 -0.01 47.42
C PartyScene 832x480 500 2.74 -0.13 61.65 0.04 -0.00 42.96
C BasketballDrill 832x480 500 3.46 -0.19 60.98 0.44 -0.02 45.55
D RaceHorses 416x240 300 2.47 -0.15 61.75 0.14 -0.01 40.88
D BQSquare 416x240 600 2.74 -0.21 60.62 0.38 -0.03 50.44
D BlowingBubbles 416x240 500 1.45 -0.10 58.12 0.03 -0.00 41.59
D BasketballPass 416x240 500 2.39 -0.14 62.42 0.15 -0.01 43.85
E FourPeople 1280x720 600 4.79 -0.27 59.57 0.99 -0.06 45.71
E Johnny 1280x720 600 6.02 -0.24 59.24 1.37 -0.06 41.68
E KristenAndSara 1280x720 600 4.15 -0.21 59.73 0.62 -0.03 47.25

Average 3.41 -0.18 61.35 0.49 -0.03 45.00

Degradation of quality (BD-BR in %)
0 0.5 1 1.5 2 2.5 3 3.5 4

R
e
d
u
ct

io
n
 i
n

 t
im

e
/e

n
e
rg

y
 (

in
 %

)

0

20

40

60

80

Proposed Solution

[21]

[4][11][7]

[1]

[22]

[33]

[19]

C7

C1

Best

in energy
in time
real time encoder
HM encoder

Fig. 13 Comparison with related works in term of
time/energy reduction (in %) and quality degradation
(BD-BR in %).

≈ 0.5% of BD-BR. Regarding [34], our results show that
the complexity reduction technique reduces the energy
consumption of 30% in average for a BD-BR increase
of 0.12%. An energy reduction of 30% cannot be ob-
tained with our current configurations of (∆,∆). Only [1]
has better results than our configurations. This tech-
nique uses 8 image filtering to compute their local and
global edge complexities and predict the partitioning of
CUs. We reimplemented in the real-time software en-
coder Kvazaar only the filtering to estimate the overhead
of this complexity reduction technique. We do not have
optimized all the computation but the results show that
the overhead of the filtering is between 20% and 30% for
the real-time configuration describe in Section 4.2.1 de-

pending of the QP value. This overhead would lead to a
decrease of the energy/time reduction under our results.

5 Conclusion

This paper presents an energy reduction scheme for
Hevc encoders based on a CTU partitioning prediction
technique that limits the recursive RDO process. The
proposed energy reduction technique exploits the corre-
lation between a CTU partitioning, the texture complex-
ity and the variance of the CTU luminance samples to
explore the trade of between energy reduction and com-
pression quality. Experimental results show that the pro-
posed algorithm is able to reduce the energy consump-
tion of the Hevc encoder by 45% to 62% — including the
algorithm overhead — for a bit rate increase of between
0.49% and 3.4% respectively. Future work will use this
energy reduction technique to control the energy con-
sumption of an Hevc Intra encoder for a given energy
consumption budget.

Acknowledgments

This work is partially supported by the French ANR
ARTEFaCT project, by COVIBE project funded by
Brittany region and by the European Celtic-Plus project
4KREPROSYS funded by Finland, Flanders, France,
and Switzerland.

13

References

1. Biao Min, Cheung RCC (2015) A Fast CU Size
Decision Algorithm for the HEVC Intra Encoder.
TCSVT 25(5):892–896, DOI 10.1109/TCSVT.2014.
2363739

2. Bossen F (2013) Common HM test conditions and
software reference configurations

3. Carroll A, Heiser G (2010) An analysis of power con-
sumption in a smartphone

4. Cassa MB, Naccari M, Pereira F (2012) Fast rate dis-
tortion optimization for the emerging HEVC stan-
dard. In: Picture Coding Symposium (PCS), 2012,
IEEE, pp 493–496

5. Chan TF, Golub GH, LeVeque RJ (1979) Updating
Formulae and a Pairwise Algorithm for Variances
Computing Sample. In: COMPSTAT, Springer Sci-
ence & Business Media, p 30

6. Efraim R, Alon N, Doron R, Avinash A, Eliezer W
(2012) Power-Management Architecture of the Intel
Microarchitecture Code-Named Sandy Bridge. IEEE
Computer Society pp 20–27

7. Feng L, Dai M, Zhao Cl, Xiong Jy (2016) Fast pre-
diction unit selection method for HEVC intra predic-
tion based on salient regions. Optoelectronics Letters
12(4):316–320, DOI 10.1007/s11801-016-6064-8

8. Hackenberg D, Schone R, Ilsche T, Molka D,
Schuchart J, Geyer R (2015) An Energy Efficiency
Feature Survey of the Intel Haswell Processor. IEEE,
pp 896–904, DOI 10.1109/IPDPSW.2015.70

9. JCT-VC (2016) HEVC reference software.
https://hevc.hhi.fraunhofer.de/

10. Karczewicz M, Ye Y, Chong I (2008) Rate distortion
optimized quantization. In: VCEG-AH21, Antalya
Turkey

11. Khan MUK, Shafique M, Henkel J (2013) An adap-
tive complexity reduction scheme with fast predic-
tion unit decision for HEVC intra encoding. In: ICIP,
IEEE, pp 1578–1582

12. Khan MUK, Shafique M, Henkel J (2018) En-
ergy Efficient Embedded Video Processing Systems.
Springer International Publishing, Cham, DOI 10.
1007/978-3-319-61455-7

13. Koivula A, Viitanen M, Lemmetti A, Vanne J, Hm-
linen TD (2015) Performance evaluation of Kvazaar
HEVC intra encoder on Xeon Phi many-core pro-
cessor. In: 2015 IEEE Global Conference on Signal
and Information Processing (GlobalSIP), IEEE, pp
1250–1254

14. Koivula A, Viitanen M, Vanne J, Hamalainen TD,
Fasnacht L (2015) Parallelization of Kvazaar HEVC
intra encoder for multi-core processors. In: Signal
Processing Systems (SiPS), 2015 IEEE Workshop
on, IEEE, pp 1–6

15. Lan C, Xu J, Sullivan GJ, Wu F (2012) Intra trans-
form skipping. In: JCTVC-I0408, Geneva, CH

16. Mercat A, Arrestier F, Hamidouche W, Pelcat M,
Menard D (2017) Energy Reduction Opportunities
in an HEVC Real-Time Encoder. In: Acoustics,
Speech and Signal Processing (ICASSP), 2017 IEEE
International Conference on, IEEE

17. Mercat A, Arrestier F, Pelcat M, Hamidouche W,
Menard D (2017) Prediction of Quad-Tree Partition-
ing for Budgeted Energy HEVC Encoding. In: Sig-
nal Processing Systems (SiPS), 2017 IEEE Work-
shop on, IEEE

18. MulticoreWare (2017) x265 HEVC Encoder / H.265
Video Codec. http://x265.org/

19. Peng KK, Chiang JC, Lie WN (2016) Low Complex-
ity Depth Intra Coding Combining Fast Intra Mode
and Fast CU Size Decision in 3d-HEVC

20. Penny W, Machado I, Porto M, Agostini L, Zatt B
(2016) Pareto-based energy control for the HEVC
encoder. In: ICIP, IEEE, pp 814–818

21. Qualcomm (2014) Snapdragon 810 processor prod-
uct brief

22. Ruiz D, Fernndez-Escribano G, Adzic V, Kalva H,
Martnez JL, Cuenca P (2015) Fast CU partition-
ing algorithm for HEVC intra coding using data
mining. Multimedia Tools and Applications DOI
10.1007/s11042-015-3014-6

23. Shen L, Zhang Z, An P (2013) Fast CU size decision
and mode decision algorithm for HEVC intra cod-
ing. Consumer Electronics, IEEE Transactions on
59(1):207–213

24. Sullivan GJ, Ohm JR, Han WJ, Wiegand T (2012)
Overview of the High Efficiency Video Coding
(HEVC) Standard. IEEE Transactions on Circuits
and Systems for Video Technology 22(12):1649–
1668, DOI 10.1109/TCSVT.2012.2221191

25. Sze V, Budagavi M, Sullivan GJ (eds) (2014) High
Efficiency Video Coding (HEVC). Integrated Cir-
cuits and Systems, Springer International Publish-
ing, Cham

26. Tan TK, Weerakkody R, Mrak M, Ramzan N,
Baroncini V, Ohm JR, Sullivan GJ (2016) Video
Quality Evaluation Methodology and Verifica-
tion Testing of HEVC Compression Performance.
TCSVT 26(1):76–90, DOI 10.1109/TCSVT.2015.
2477916

27. UltraVideoGroup (2017) Kvazaar HEVC Encoder.
http://ultravideo.cs.tut.fi/#encoder

28. Vanne J, Viitanen M, Hamalainen TD, Hallapuro
A (2012) Comparative Rate-Distortion-Complexity
Analysis of HEVC and AVC Video Codecs.
IEEE Transactions on Circuits and Systems for
Video Technology 22(12):1885–1898, DOI 10.1109/
TCSVT.2012.2223013

29. Vantrix (2017) F265 Open Source HEVC/H.265
Project. http://vantrix.com/f-265-2/

30. Viitanen M, Koivula A, Lemmetti A, Vanne J,
Hamalainen TD (2015) Kvazaar HEVC encoder for
efficient intra coding. In: ISCAS, IEEE, pp 1662–

14

1665
31. Wang X, Xue Y (2016) Fast HEVC intra coding al-

gorithm based on Otsu’s method and gradient. In:
BMSB, IEEE, pp 1–5

32. Wiegand T, Sullivan G, Bjontegaard G, Luthra A
(2003) Overview of the H.264/AVC video coding
standard. IEEE Transactions on Circuits and Sys-
tems for Video Technology 13(7):560–576, DOI
10.1109/TCSVT.2003.815165

33. Wien M (2015) High Efficiency Video Coding.
Signals and Communication Technology, Springer
Berlin Heidelberg, Berlin, Heidelberg

34. Zhang J, Li B, Li H (2015) An Efficient Fast Mode
Decision Method for Inter Prediction in HEVC.
IEEE Transactions on Circuits and Systems for
Video Technology pp 1–1, DOI 10.1109/TCSVT.
2015.2461991

