Skip to main content
Log in

Real-time maximally stable homogeneous regions

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

In this paper, we present the concept of maximally stable homogeneous regions (MSHR). MSHR are conceptually very similar to maximally stable extremal regions but can be segmented in images with an arbitrary number of channels. The computation of the presented MSHR relies on the construction of a quasi-flat zone hierarchy. We present a fast algorithm for computing the hierarchy that overcomes the runtime restrictions of existing approaches. The proposed algorithm can construct the quasi-flat zone hierarchy efficiently in real time, scales linearly in the number of pixels and, in practice, sub-linearly in the number of channels. In the experiments, we display how MSHR can be used to improve the results of optical character recognition systems and to perform 3D object segmentation. We further demonstrate the universality and speed of the proposed algorithm for three example applications: image segmentation, object tracking, and image filtering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Angulo, J.: Geometric algebra colour image representations and derived total orderings for morphological operators-part i: colour quaternions. J. Vis. Commun. Image Represent. 21(1), 33–48 (2010)

    Article  Google Scholar 

  2. Berger, C., Géraud, T., Levillain, R., Widynski, N., Baillard, A., Bertin, E.: Effective component tree computation with application to pattern recognition in astronomical imaging. In: IEEE International Conference on Image Processing (ICIP), pp. 40–44 (2007)

  3. Böttger, T., Eisenhofer, C.: Efficiently tracking homogeneous regions in multichannel images. In: International Conference on Pattern Recognition Systems (ICPRS), pp. 14–22 (2017)

  4. Böttger, T., Follmann, P.: The benefits of evaluating tracker performance using pixel-wise segmentations. In: IEEE International Conference on Computer Vision (ICCV), pp. 1983–1991 (2017)

  5. Böttger, T., Follmann, P., Fauser, M.: Measuring the accuracy of object detectors and trackers. In: German Conference on Pattern Recognition (GCPR), pp. 415–426. Springer (2017)

  6. Bušta, M., Neumann, L., Matas, J.: Deep textspotter: an end-to-end trainable scene text localization and recognition framework. In: IEEE International Conference on Computer Vision (ICCV), pp. 22–29 (2017)

  7. Carlinet, E., Géraud, T.: A comparison of many max-tree computation algorithms. In: Mathematical Morphology and Its Applications to Signal and Image Processing (ISMM), pp. 73–85 (2013)

  8. Carlinet, E., Géraud, T.: Mtos: a tree of shapes for multivariate images. IEEE Trans. Image Process. 24(12), 5330–5342 (2015)

    Article  MathSciNet  Google Scholar 

  9. Carlinet, E., Crozet, S., Géraud, T.: Mtos: the tree of shapes turned into a max-tree: a simple and efficient linear algorithm. IEEE International Conference on Image Processing, pp. 1488–1492 (2018)

  10. Chavez, A., Gustafson, D.: Color-based extensions to MSERs. In: Advances in Visual Computing—7th International Symposium (ISVC), pp. 358–366 (2011)

  11. Chen, L., Berry, M.W., Hargrove, W.W.: Using dendronal signatures for feature extraction and retrieval. Int. J. Imaging Syst. Technol. 11(4), 243–253 (2000)

    Article  Google Scholar 

  12. Cousty, J., Bertrand, G., Couprie, M., Najman, L.: Fusion graphs: merging properties and watersheds. J. Math. Imaging Vis. 30(1), 87–104 (2008)

    Article  MathSciNet  Google Scholar 

  13. Cousty, J., Najman, L., Perret, B.: Constructive links between some morphological hierarchies on edge-weighted graphs. In: Mathematical Morphology and Its Applications to Signal and Image Processing, pp. 86–97 (2013). https://doi.org/10.1007/978-3-642-38294-9_8

  14. Donoser, M., Bischof, H.: Efficient maximally stable extremal region (MSER) tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 553–560 (2006)

  15. Donoser, M., Riemenschneider, H., Bischof, H.: Linked edges as stable region boundaries. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1665–1672 (2010)

  16. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results (2007). http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html

  17. Forssén, P.: Maximally stable colour regions for recognition and matching. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2007)

  18. Gower, J.C., Ross, G.J.: Minimum spanning trees and single linkage cluster analysis. Appl. Stat. 18(1), 54–64 (1969)

    Article  MathSciNet  Google Scholar 

  19. Haralick, R.M., Shapiro, L.G.: Computer and Robot Vision, vol. 1. Addison-Wesley Longman Publishing Co., Inc, Boston (1991)

    Google Scholar 

  20. He, K., Sun, J., Tang, X.: Guided image filtering. In: European Conference on Computer Vision (ECCV), pp. 1–14 (2010)

  21. Jones, R.: Connected filtering and segmentation using component trees. Comput. Vis. Image Underst. 75(3), 215–228 (1999)

    Article  Google Scholar 

  22. Karatzas, D., Gomez-Bigorda, L., Nicolaou, A., Ghosh, S., Bagdanov, A., Iwamura, M., Matas, J., Neumann, L., Chandrasekhar, V.R., Lu, S., et al.: Icdar 2015 competition on robust reading. In: International Conference on Document Analysis and Recognition (ICDAR), pp. 1156–1160. IEEE (2015)

  23. Karatzas, D., Gomez-Bigorda, L., Nicolaou, A., Ghosh, S.K., Bagdanov, A.D., Iwamura, M., Matas, J., Neumann, L., Chandrasekhar, V.R., Lu, S., Shafait, F., Uchida, S., Valveny, E.: ICDAR 2015 competition on robust reading. In: 13th International Conference on Document Analysis and Recognition (ICDAR), pp. 1156–1160 (2015)

  24. Koo, H.I., Kim, D.H.: Scene text detection via connected component clustering and nontext filtering. IEEE Trans. Image Process. 22(6), 2296–2305 (2013)

    Article  MathSciNet  Google Scholar 

  25. Kristan, M., Leonardis, A., Matas, J., Felsberg, M., Pflugfelder, R.P., Cehovin, L., Vojír, T., Häger, G.: The visual object tracking VOT2016 challenge results. In: European Conference on Computer Vision Workshops (ECCVW), pp. 777–823 (2016). https://doi.org/10.1007/978-3-319-48881-3_54

  26. Kurtz, C., Naegel, B., Passat, N.: Connected filtering based on multivalued component-trees. IEEE Trans. Image Process. 23(12), 5152–5164 (2014)

    Article  MathSciNet  Google Scholar 

  27. Kurtz, C., Naegel, B., Passat, N.: Multivalued component-tree filtering. In: International Conference on Pattern Recognition (ICPR), pp. 1008–1013 (2014)

  28. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: Proceedings of the British Machine Vision Conference (BMVC), pp. 1–10 (2002)

  29. Mattes, J., Demongeot, J.: Efficient algorithms to implement the confinement tree. In: Discrete Geometry for Computer Imagery (DGCI), pp. 392–405 (2000)

  30. Meyer, F., Maragos, P.: Morphological scale-space representation with levelings. In: Scale-Space Theories in Computer Vision, Second International Conference, Scale-Space’99, Corfu, Greece, September 26-27, 1999, Proceedings, pp. 187–198 (1999). https://doi.org/10.1007/3-540-48236-9_17

  31. Meyer, F., Maragos, P.: Nonlinear scale-space representation with morphological levelings. J. Vis. Commun. Image Represent. 11(2), 245–265 (2000). https://doi.org/10.1006/jvci.1999.0447

    Article  Google Scholar 

  32. Naegel, B., Passat, N.: Towards connected filtering based on component-graphs. In: Mathematical Morphology and Its Applications to Signal and Image Processing (ISMM), pp. 353–364 (2013)

  33. Nagao, M., Matsuyama, T., Ikeda, Y.: Region extraction and shape analysis in aerial photographs. Comput. Graph. Image Process. 10(3), 195–223 (1979)

    Article  Google Scholar 

  34. Neumann, L., Matas, J.: Real-time scene text localization and recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3538–3545 (2012)

  35. Nistér, D., Stewénius, H.: Linear time maximally stable extremal regions. In: European Conference on Computer Vision (ECCV), pp. 183–196 (2008)

  36. Ouzounis, G.K., Soille, P.: The alpha-tree algorithm. JRC Scientific and Policy Report (2012)

  37. http://www.robots.ox.ac.uk/~vgg/research/affine/

  38. Passat, N., Naegel, B.: Component-trees and multivalued images: structural properties. J. Math. Imaging Vis. 49(1), 37–50 (2014)

    Article  MathSciNet  Google Scholar 

  39. Passat, N., Naegel, B., Benoît, K.: Component-graph construction. J. Math. Imaging Vis. 61, 1–26 (2019)

    Article  Google Scholar 

  40. Qin, S., Manduchi, R.: A fast and robust text spotter. In: IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1–8 (2016)

  41. Salembier, P., Oliveras-Vergés, A., Garrido, L.: Antiextensive connected operators for image and sequence processing. IEEE Trans. Image Process. 7(4), 555–570 (1998)

    Article  Google Scholar 

  42. Skauli, T., Farrell, J.: A collection of hyperspectral images for imaging systems research. In: Digital Photography IX, vol. 8660, p. 86600C. International Society for Optics and Photonics (2013)

  43. Soille, P.: Constrained connectivity for hierarchical image decomposition and simplification. IEEE Trans. Pattern Anal. Mach. Intell. 30(7), 1132–1145 (2008). https://doi.org/10.1109/TPAMI.2007.70817

    Article  Google Scholar 

  44. Soler, L., Hostettler, A., Agnus, V., Charnoz, A., Fasquel, J., Moreau, J., Osswald, A., Bouhadjar, M., Marescaux, J.: 3d image reconstruction for comparison of algorithm database: a patient-specific anatomical and medical image database (2012). http://ircad.fr/research/3D-ircadb-01

  45. Weber, J., Lefèvre, S.: Fast quasi-flat zones filtering using area threshold and region merging. J. Vis. Commun. Image Represent. 24(3), 397–409 (2013). https://doi.org/10.1016/j.jvcir.2013.01.011

    Article  Google Scholar 

  46. Westenberg, M.A., Roerdink, J.B.T.M., Wilkinson, M.H.F.: Volumetric attribute filtering and interactive visualization using the max-tree representation. IEEE Trans. Image Process. 16(12), 2943–2952 (2007)

    Article  MathSciNet  Google Scholar 

  47. Wilkinson, M.H.F.: A fast component-tree algorithm for high dynamic-range images and second generation connectivity. In: IEEE International Conference on Image Processing (ICIP), pp. 1021–1024 (2011)

  48. Wu, Y., Lim, J., Yang, M.: Object tracking benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1834–1848 (2015). https://doi.org/10.1109/TPAMI.2014.2388226

    Article  Google Scholar 

  49. Xu, Y., Carlinet, E., Géraud, T., Najman, L.: Hierarchical segmentation using tree-based shape spaces. IEEE Trans. Pattern Anal. Mach. Intell. 39(3), 457–469 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Böttger.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Böttger, T. Real-time maximally stable homogeneous regions. J Real-Time Image Proc 18, 99–112 (2021). https://doi.org/10.1007/s11554-020-00951-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-020-00951-6

Keywords

Navigation