Skip to main content
Log in

Real-time automated video highlight generation with dual-stream hierarchical growing self-organizing maps

  • Special Issue Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Video has rapidly become one of the most common sources of visual information transfer. The number of videos uploaded to YouTube in a single day is estimated to take over 82 years to watch. Automated tools and techniques for analyzing and understanding video content, thus, have become an essential requirement. This paper addresses the problem of video highlight generation for large video files. We propose a novel skimming-based unsupervised video highlight generation method utilizing statistical image processing and data clustering, which process frame-level static and dynamic features of input video in two streams. The dynamic feature stream is represented by computing a dense optical flow for each consecutive frame, providing instantaneous velocity information for every pixel, which is then characterized by a per-frame orientation histogram, weighted by the norm, with orientations quantized. To process multi-scene videos, we utilize the divisive hierarchical clustering capability of growing self-organizing map (GSOM) using a dual-step top-down hierarchical approach in which the first level consists of clustering of spatial and temporal features of the video and in the second level, each parent cluster is hierarchically subdivided into child clusters using GSOM. The video highlight generation process is conducted real time by evaluating segments of video snippets based on a pre-defined time interval. We demonstrate the accuracy, robustness and the quality of highlights generated using a qualitative analysis conducted using 1625 human experts on highlights generated from two datasets. Further, we conduct a runtime analysis to demonstrate the efficient processing capability of the proposed method, to be used in real-time settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Truong, B.T., Venkatesh, S.: Video abstraction: a systematic review and classification. ACM Trans. Multimed. Comput. Commun. Appl. 3(1), 3-es (2007). https://doi.org/10.1145/1198302.1198305

    Article  Google Scholar 

  2. Nawaratne, R., Alahakoon, D., Silva, D.D., Yu, X.: Spatiotemporal anomaly detection using deep learning for real-time video surveillance. IEEE Trans. Ind. Inform. (2019). https://doi.org/10.1109/tii.2019.2938527

    Article  Google Scholar 

  3. Zhang, K., Chao, W.-L., Sha, F., Grauman, K.: Video summarization with long short-term memory. In: Computer Vision—ECCV 2016, pp. 766–782 (2016)

  4. Jung, B., Song, J., Lee, Y.: A narrative-based abstraction framework for story-oriented video. ACM Trans. Multimed. Comput. Commun. Appl. (2007). https://doi.org/10.1145/1230812.1230817

    Article  Google Scholar 

  5. Yu, Y., Lee, S., Na, J., Kang, J., Kim, G.: A deep ranking model for spatio-temporal highlight detection from a 360° video. In: Thirty-Second AAAI Conference on Artificial Intelligence. p. 9 (2018)

  6. Yang, H., Wang, B., Lin, S., Wipf, D., Guo, M., Guo, B.: Unsupervised extraction of video highlights via robust recurrent auto-encoders. arXiv:1510.01442 [cs] (2015)

  7. Ringer, C., Nicolaou, M.A.: Deep unsupervised multi-view detection of video game stream highlights. In: Proceedings of the 13th International Conference on the Foundations of Digital Games—FDG’18, Malmö, Sweden, pp. 1–6 (2018). https://doi.org/10.1145/3235765.3235781

  8. Alahakoon, D., Halgamuge, S.K., Srinivasan, B.: Dynamic self-organizing maps with controlled growth for knowledge discovery. IEEE Trans. Neural Netw. 11(3), 601–614 (2000). https://doi.org/10.1109/72.846732

    Article  Google Scholar 

  9. Amarasiri, R., Alahakoon, D., Smith, K., Premaratne, M.: HDGSOMr: a high dimensional growing self-organizing map using randomness for efficient web and text mining. In: Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence, Washington, DC, USA, pp. 215–221 (2005). https://doi.org/10.1109/wi.2005.70

  10. Khosravi, M.R., Basri, H., Rostami, H., Samadi, S.: Distributed random cooperation for VBF-based routing in high-speed dense underwater acoustic sensor networks. J. Supercomput. 74(11), 6184–6200 (2018). https://doi.org/10.1007/s11227-018-2532-1

    Article  Google Scholar 

  11. Bandaragoda, T., et al.: Artificial intelligence based commuter behaviour profiling framework using Internet of things for real-time decision-making. Neural Comput. Appl. (2020). https://doi.org/10.1007/s00521-020-04736-7

    Article  Google Scholar 

  12. Gong, B., Chao, W.-L., Grauman, K., Sha, F.: Diverse sequential subset selection for supervised video summarization. In: Advances in neural information processing systems. pp. 2069–2077 (2014)

  13. Zhang, Y., Liang, X., Zhang, D., Tan, M., Xing, E.P.: Unsupervised object-level video summarization with online motion auto-encoder. Pattern Recognit. Lett. (2018). https://doi.org/10.1016/j.patrec.2018.07.030

    Article  Google Scholar 

  14. Nawaratne, R., Alahakoon, D., De Silva, D., Chhetri, P., Chilamkurti, N.: Self-evolving intelligent algorithms for facilitating data interoperability in IoT environments. Future Gener. Comput. Syst. 86, 421–432 (2018). https://doi.org/10.1016/j.future.2018.02.049

    Article  Google Scholar 

  15. Hannane, R., Elboushaki, A., Afdel, K., Naghabhushan, P., Javed, M.: An efficient method for video shot boundary detection and keyframe extraction using SIFT-point distribution histogram. Int. J. Multimed. Inf. Retr. 5(2), 89–104 (2016). https://doi.org/10.1007/s13735-016-0095-6

    Article  Google Scholar 

  16. Karimi, V., Tashk, A.: Age and gender estimation by using hybrid facial features. In: 2012 20th Telecommunications Forum (TELFOR), pp. 1725–1728 (2012). https://doi.org/10.1109/TELfor.2012.6419560

  17. Geng, T., Yang, M., You, Z., Cai, Y., Huang, F.: Multiscale overlapping blocks binarized statistical image features descriptor with flip-free distance for face verification in the wild. Neural Comput. Appl. 30(10), 3243–3252 (2018)

    Article  Google Scholar 

  18. Niu, K., Wang, H.: Video highlight extraction via content-aware deep transfer. Multimed. Tools Appl. (2019). https://doi.org/10.1007/s11042-019-7442-6

    Article  Google Scholar 

  19. Moses, T.M., Balachandran, K.: A deterministic key-frame indexing and selection for surveillance video summarization. In: 2019 International Conference on Data Science and Communication (IconDSC), pp. 1–5 (2019). https://doi.org/10.1109/IconDSC.2019.8816901

  20. Fei, M., Jiang, W., Mao, W.: A novel compact yet rich key frame creation method for compressed video summarization. Multimed. Tools Appl. 77(10), 11957–11977 (2018). https://doi.org/10.1007/s11042-017-4843-2

    Article  Google Scholar 

  21. Kohonen, T.: The self-organizing map. Proc. IEEE 78(9), 1464–1480 (1990). https://doi.org/10.1109/5.58325

    Article  Google Scholar 

  22. Kumar, K., Shrimankar, D.D., Singh, N.: SOMES: an efficient SOM technique for event summarization in multi-view surveillance videos. Recent Findings in Intelligent Computing Techniques, pp. 383–389. Springer, Singapore (2018)

    Chapter  Google Scholar 

  23. Gharaee, Z., Gärdenfors, P., Johnsson, M.: First and second order dynamics in a hierarchical SOM system for action recognition. Appl. Soft Comput. 59, 574–585 (2017). https://doi.org/10.1016/j.asoc.2017.06.007

    Article  Google Scholar 

  24. Farooq, F., Ahmed, J., Zheng, L.: Facial expression recognition using hybrid features and self-organizing maps. In: 2017 IEEE International Conference on Multimedia and Expo (ICME), Hong Kong, Hong Kong, pp. 409–414 (2017). https://doi.org/10.1109/icme.2017.8019503

  25. Jung, Y., Cho, D., Kim, D., Woo, S., Kweon, I.S.: Discriminative feature learning for unsupervised video summarization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8537–8544 (2019). https://doi.org/10.1609/aaai.v33i01.33018537

  26. Nawaratne, R., Bandaragoda, T., Adikari, A., Alahakoon, D., De Silva, D., Yu, X.: Incremental knowledge acquisition and self-learning for autonomous video surveillance. In: IECON 2017—43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, pp. 4790–4795 (2017). https://doi.org/10.1109/iecon.2017.8216826

  27. Zheng, H., Wang, H., Black, N.: Human activity detection in smart home environment with self-adaptive neural networks. In: 2008 IEEE International Conference on Networking, Sensing and Control, Sanya, China, pp. 1505–1510 (2008). https://doi.org/10.1109/icnsc.2008.4525459

  28. Solichin, A., Harjoko, A., Putra, A.E.: Grid-based histogram of oriented optical flow for analyzing movements on video data. In: 2015 International Conference on Data and Software Engineering (ICoDSE), Yogyakarta, Indonesia, pp. 114–119 (2015). https://doi.org/10.1109/icodse.2015.7436982

  29. Roth, S., Black, M.J.: On the spatial statistics of optical flow. In: Tenth IEEE International Conference on Computer Vision (ICCV’05), vol. 1, pp. 42–49 (2005). https://doi.org/10.1109/iccv.2005.180

  30. van Hateren, J.H., Ruderman, D.L.: Independent component analysis of natural image sequences yields spatio-temporal filters similar to simple cells in primary visual cortex. Proc. Biol. Sci. 265(1412), 2315–2320 (1998)

    Article  Google Scholar 

  31. Fablet, R., Bouthemy, P.: Non parametric motion recognition using temporal multiscale Gibbs models. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, vol. 1, p. I (2001). https://doi.org/10.1109/cvpr.2001.990516

  32. Tavallali, P., Yazdi, M., Khosravi, M.R.: Robust cascaded skin detector based on AdaBoost. Multimed. Tools Appl. 78(2), 2599–2620 (2019)

    Article  Google Scholar 

  33. Tavallali, P., Yazdi, M., Khosravi, M.R.: An efficient training procedure for Viola–Jones face detector. In: 2017 International Conference on Computational Science and Computational Intelligence (CSCI), pp. 828–831 (2017)

  34. Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artif. Intell. 17(1), 185–203 (1981). https://doi.org/10.1016/0004-3702(81)90024-2

    Article  Google Scholar 

  35. Bruhn, A., Weickert, J., Schnörr, C.: Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. Int. J. Comput. Vis. 61(3), 211–231 (2005). https://doi.org/10.1023/B:VISI.0000045324.43199.43

    Article  Google Scholar 

  36. Black, M.J., Anandan, P.: Robust dynamic motion estimation over time. In: 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Proceedings, pp. 296–302 (1991). https://doi.org/10.1109/CVPR.1991.139705

  37. Wang, T., Snoussi, H.: Histograms of optical flow orientation for visual abnormal events detection. In: 2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance, pp. 13–18 (2012). https://doi.org/10.1109/AVSS.2012.39

  38. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 1, pp. 886–893 (2005). https://doi.org/10.1109/cvpr.2005.177

  39. Yin, H.: The self-organizing maps: background, theories, extensions and applications. In: Fulcher, J., Jain, L.C. (eds.) Computational Intelligence: A Compendium, pp. 715–762. Springer, Berlin (2008)

    Chapter  Google Scholar 

  40. Nallaperuma, D., et al.: Online incremental machine learning platform for big data-driven smart traffic management. IEEE Trans. Intell. Transp. Syst. (2019). https://doi.org/10.1109/tits.2019.2924883

    Article  Google Scholar 

  41. Nawaratne, R., Alahakoon, D., De Silva, D., Yu, X.: HT-GSOM: dynamic self-organizing map with transience for human activity recognition. In: 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), vol. 1, pp. 270–273 (2019). https://doi.org/10.1109/indin41052.2019.8972260

  42. Nawaratne, R., Alahakoon, D., De Silva, D., Kumara, H., Yu, X.: Hierarchical two-stream growing self-organizing maps with transience for human activity recognition. IEEE Trans. Ind. Inform. (2019). https://doi.org/10.1109/tii.2019.2957454

    Article  Google Scholar 

  43. Sohn, M.-W.: Distance and cosine measures of niche overlap. Soc. Netw. 23(2), 141–165 (2001). https://doi.org/10.1016/S0378-8733(01)00039-9

    Article  Google Scholar 

  44. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 [cs] (2014)

  45. Gygli, M., Grabner, H., Riemenschneider, H., Van Gool, L.: Creating summaries from user videos. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) Computer Vision—ECCV 2014, vol. 8695, pp. 505–520. Springer, Cham (2014)

    Chapter  Google Scholar 

  46. Blank, M., Gorelick, L., Irani, E.S.M., Basri, R.: Actions as space-time shapes. In: 10th IEEE International Conference on Computer Vision (ICCV'05) Volume 1, IEEE, vol. 2, pp. 1395–1402 (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Kr. Luhach.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunawardena, P., Amila, O., Sudarshana, H. et al. Real-time automated video highlight generation with dual-stream hierarchical growing self-organizing maps. J Real-Time Image Proc 18, 1457–1475 (2021). https://doi.org/10.1007/s11554-020-00957-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-020-00957-0

Keywords

Navigation