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Abstract
With the success of the deep residual network for image recognition tasks, the residual connection or skip connection
has been widely used in deep learning models for various vision tasks, including single image super-resolution (SISR).
Most existing SISR approaches pay particular attention to residual learning, while few studies investigate highway
connection for SISR. Although skip connection can help to alleviate the vanishing gradient problem and enable
fast training of the deep network, it still provides the coarse level of approximation in both forward and backward
propagation paths and thus challenging to recover high-frequency details. To address this issue, we propose a novel
model for SISR by using highway connection (HNSR), which composes of a non-linear gating mechanism to further
regulate the information. By using the global residual learning and replacing all local residual learning with designed
gate unit in highway connection, HNSR has the capability of efficiently learning different hierarchical features and
recovering much more details in image reconstruction. Experimental results have validated that HNSR can provide
not only improved quality but also less prone to a few common problems during training. Besides, the more robust
and efficient model is suitable for implementation in real-time and mobile systems.

Keywords Single image super-resolution · Highway connection · Residual learning · Gating mechanism.

1 Introduction

Single image super-resolution (SISR) aims to reconstruct

a high-resolution (HR) image from its corresponding

low-resolution (LR) version. It has attracted increasing

interest from both academic and industrial communi-

ties for its broad applications in computer vision, face

recognition in security and surveillance video, medical

imaging, and object detection ect. The image reconstruc-
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tion approach becomes challenging when the captured

images are affected by several factors such as bandwidth,

noise, light conditions, and other artifacts.

Super-resolution image reconstruction approach is

an ill-posed problem since there exist multiple solu-

tions HR for any given LR image. Super-resolution

methods can be divided into three main categories, i.e.,

interpolation-based, reconstruction-based, and learning-

based methods. Among them, interpolation-based meth-

ods are the most classical and straightforward, which

interpolating missing pixels in the image from its neigh-

borhoods. However, interpolation-based methods tend

to smooth the reconstructed image; hence, the informa-

tion of lost high frequencies could not be reconstructed.

Reconstruction-based methods usually predefine certain

knowledge priors or constraints such as local structure

similarity, non-local means, or edge priors in an in-

verse reconstruction problem. These knowledge priors

are broad and vary depending on a particular dataset,

which makes them challenging in practical applications.

Lastly, the learning-based methods are capable of learn-
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ing prior knowledge from a massive amount of data, and

consequently result in complex high dimensional map-

ping between LR-HR patch pairs, which have shined

a new light on SISR [1]. Among learning-based meth-

ods, deep learning-based algorithms, especially those

based on Convolutional Neural Networks (CNNs), have

recently proved extremely powerful for SISR tasks due

to their capability in feature extraction and mapping.

The first CNN-based SISR model is introduced by

Dong et al., named Super-resolution convolutional neu-

ral network (SRCNN) [2]. Although only three layers

are used, the results significantly outperform those non-

deep learning algorithms. With the success of the deep

residual network, Kim et al. proposed a Very Deep Con-

volutional Networks (VDSR) [3] and a Deeply Recursive

Convolutional Network (DRCN) [4], both using 20 con-

volutional layers. The introduced residual connections

have indeed made these models possible to train deep

SISR networks for improved quality of reconstructed

images.

Tai et al. [5] introduced deeply recursive residual

networks (DRRN), which used both a global residual

connection and local residual connections and to reduce

the number of parameters with recursive convolution

inside residual blocks. Laplacian Pyramid has been used

for decades, which enables to decomposes an image

into a series of high-pass bands and low-pass bands.

Instead of using one-step upsampling, Lai et al. [6]

proposed Laplacian Pyramid super-resolution networks

(Lap-SRN) to reconstruct the image progressively.

Since the success of ResNet [7] in 2015, many re-

finements have been proposed in SISR. DenseNet [8] is

another effective architecture, which has inspired several

models such as Memory Network (MemNet [9]), Cas-

cading Residual Network (CARN [10]), and a Residual

Dense Network (RDN [11]). Another approach is to fuse

dense connections and progressive learning, which has

been applied in Progressive Dilated Residual Densenet

(DRDN [12], [13]), and even in generative adversarial

network-based model (G-GANISR [14]). Residual con-

nections from ResNet enable to re-use features, while

dense connections from DenseNet enable us to explore

new features through the concatenation of all the fea-

tures from preceding blocks. The common idea shared by

these Densenet-based networks is to design a model that

operates on both fine time scale (short-term memory)

and coarse time scale (long-term memory). To transfer

information through a long-time, the Recurrent Network

has shown to be great potential in capturing short-time

and long-time dependencies.

Based on this new view, we propose in this paper

a novel SISR architecture, called Highway Network for

Super Resolution (HNSR). Unlike most previous work

on SISR, we replace all local residual connections with

highway connections to use features from all previous

blocks. With the same target of mitigating gradient

vanishing as skip connection, the highway connection

stabilizes the training especially in addressing problems

such as dying ReLU, gradient exploding and our gating

mechanism enable to recover fine detail in lost high-

frequencies.

In summary, we highlight our main contribution in

the following points:

1. We introduce highway connection based architec-
ture for SISR, which differs most of the existing models,

while achieves competitive performances in widely used

benchmarks and impressive visual performance.

2. Our introduced highway connection-based model

can achieve faster and better convergence, which is

less prominent to dying ReLU and gradient exploding

problems than those using skip connections. Experi-

mental results validate the outstanding discriminative

learning ability of our model compared with other well-

established baselines for SISR.

2 Related work

2.1 Deep CNN-based network for SISR

Convolutional Neural Networks (CNNs) has widely used

in various computer vision tasks. By using multiple

feature maps, filters or kernels, CNNs are capable of

capturing abundant features from the original input.

Also, the universal approximation theorem states that

neural networks with a single hidden layer can approxi-

mate any continuous function. Therefore, the capability

in feature extraction and mapping make it very helpful

to predict high-frequency details loss in low-resolution

image. The CNN-based SISR models attempt to learn

the mapping between observed LR and HR patch pairs

and then applied to predict a super-resolution (SR) im-

age from an unseen LR image. The pioneer CNN-based

SISR model introduced by Dong et al. [2], abbreviated

as SRCNN [2], which contained three layers presenting

three steps: feature extraction, non-linear mapping, and

reconstruction. Later, observing ”the deeper, the bet-

ter”, Kim et al. proposed two models named Very Deep

Convolutional Network (VDSR [3]) and Deeply Recur-

sive Convolutional Network (DRCN [4]), both stacking

20 convolutional layers. The CNN-based SISR network

can go deeper using residual learning. The Enhanced

Deep Super Resolution (EDSR [15]) has been drawn

research attention in due to its significant improve-

ment in SISR accuracy. There also have several promis-

ing architectures to demonstrate different novelty such

as Residual Channel Attention Network (RCAN [16]),
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Wide Activation Super-resolution (WDSR [17]), Super-

resolution Clique Network (SRCliqueNet [18]), Residual

Dense Network (RDN [11]), Information Distillation

Network (IDN [19]), and Cascading Residual Network

(CARN [10]), etc. However, as performance improves,

computation complexity and storage requirements be-

come a significant issue in real-time applications. Also,

to apply reproduced CNN-based models in real-world

applications can be difficult if those models are sensitive

to gradient vanishing/exploding, inappropriate learning

rate. Hence, the design of the model should consider

such common problems in CNN training.

2.2 Skip connection and Highway connection

Training the deep learning networks can be challenging

due to several reasons, including the gradient vanishing

and information morphs problems. Let xn denote the

network’s input at layer n, constantly transforming at

each layer xn+1 = T (xn) leads to information morphs,

where it is difficult to exploit the best usable information

in the past properly. Instead, both Residual Networks

(ResNet [7]) and Highway Network [20] can be regarded

as an application of LSTM, following the similar way of

any state change: xn+1 = xn +∆xn+1 . ResNet indeed
does exactly, which utilizes extra identity connections

to enhance information flow such that very deep neural

networks can be effectively optimized. Such skip connec-

tions guarantee the direct propagation of signals among

different layers, thereby avoid gradient vanishing and

also information morphs. Given the input xn at layer
n, after being transformed Fn(xn,Wfn), the output at

layer n+ 1 can be represented as:

xn+1 = xn + Fn(xn,Wfn). (1)

where Fn(xn,Wfn) is equivalent to ∆xn+1, the residual

between xn and xn+1.

In practice, although gradient vanishing has solved,

the subsequent change in distribution through the net-
work can still lead to dying ReLU or gradient exploding

problems. For example, if F function is as Conv1 −
RELU−Conv2, and the incoming neurons to ReLU are

entirely on the negative range, the backpropagation gra-

dients through ReLU will vanish, thus Conv1 is hardly

to learn. Over time, a large part of the network will

possibly leave unused if such neurons are unable to re-

cover from negative. In other words, the ReLU is always

dying for those neurons. The converse of the range could

lead to gradient exploding. The ideal distribution of the

input to ReLU should be symmetric with a zero mean.

For that reason, by using of Batch-normalization [21]

helps to normalize the layer before ReLU activation or

if possible to find another way to achieve that.

The Highway Network [20] is another approach to

solve gradient vanishing.

xn+1 = σn � xn + (1− σn)�∆xn+1 (2)

where σn is a sigmoid function (0 ≤ σn ≤ 1) with

trainable parameters, and � is a Hadamard product or

element-wise product. The best usable neurons in the

past can be exploited by adaptively setting a particular

σi to 1, avoiding gradient vanishing.

By using such highway connection in (2), the layer

distribution hardly shift to the extreme range in the

network, since the output of a layer is always a convex

combination of the input and the transformation. This

property could allow the model to further increase the

learning rate, speeding up the training with minimizing

gradient exploding or vanishing. We use a learning rate

of 4e-4 with the baseline model but different connections.

We measure the percentage of the positive responses by

ReLU activation. Assuming that xi in x is independent

of each other but shares the same mean and variance.

The linear transform before ReLU activation, named pre-

activation z = wTx, will approach normal distribution,

according to the central limit theorem. The distribution

after ReLU activation is skew with mode = 0,mean ≥ 0,

and standard variance ≥ 0. Pearson’s coefficient of
skewness can be calculated as:

skp =
mean−mode

standard variance
=

mean

standard variance
(3)

The lower skp is, the more skewed the distribution is. It

is also can interpret
1

skp
as a Coefficient of Variation

(CV), which shows how much variance is around the

mean in the data. It is well-known that the network

training converges faster if the average of each input
variable over the training set has a zero mean [22]. From

Fig. 1, we observe that the ReLUs activation in skip

connection-based model have extremely skewed distri-

bution (spk ≈ 0.2) in most ReLUs activations. This is

caused by a significant number of 0 values outputted by

ReLU. In other words, the mean of the pre-activation

z is more negative, whose then most values were ze-

roed out by ReLU activation. A few last ReLUs acti-

vations continuously aim to correct the bias shift intro-

duced by previous ReLUs. At this learning rate, the

skip connection-used model can not learn effectively. In

contrast, the highway connection-based model keeps all

ReLU’s spk ≈ 0.4 in a stable range with less correction.

This advantage of highway connections can be explained

by the convex combination giving an upper estimation

of expectation of all Frobenius p-norm lower than that
of skip connections.

E[‖xn+1‖p] ≤ E[‖cn � xn‖p] + E[‖(1− cn)� hn‖p]

< E[‖xn‖p] + E[‖hn‖p]
(4)
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Fig. 1: The Pearson’s coefficient of skewness (spk) of

ReLUs activation vs the network depth.

where the first inequality hold by Minkowski inequality
and the second inequality hold since cn is a sigmoid

function (0 ≤ cn, 1− cn ≤ 1.)

The network input, x0, is typically normalized to

have a zero mean and a variance of 1, hence there is less

chance for highway connection-based model to push the

mean of consequent layer far away from 0 in comparison

with those using skip connections.

3 The proposed model

In this section, we describe our proposed Highway Net-

work for Super Resolution (HNSR). We construct a

carry gate that is inspired by Gated Recurrent Unit

(GRU [23]). The only global residual connection was used

in our model. For each HNSR block, assume that xn is

the network’s representation of network input x0 at layer

n. Let hn = Fn(xn,Wfn) be the intermediate transform

function of input xn, then the cn = Cn([xn, hn],Wcn),

tn = Tn([xn, hn],Wtn) are carry and the transform gate,

typically utilize a sigmoid nonlinear function. The trans-

form gate tn is set to 1− cn. The carry gate bias, bcn
as following is set to +1 at the start of training. Given

the input xn, our HNSR model is defined as follow:

hn = Fn(Wfnxn + bfn). (5)

cn = Cn(Wcn[xn, hn] + bcn). (6)

xn+1 = cn � xn + (1− cn)� hn. (7)

where W denote trainable weights, and b is trainable

biases.
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Fig. 2: The structure of each HNSR block, transforming

input xn to output xn+1.

The motivation behind this model is two-fold. First,

we use highway connection to constraint the distribution

of the output at the end of each block not going out

of the optimal range for ReLUs activation, which helps

speed up the training. The significant change of the

distribution will cause dying ReLUs, gradient exploding,

or the ReLUs activation has continuously to correct the

bias shift, which leads to slower training [24]. Second,

we form our attention mechanism, combining both the

input xn and intermediate output hn to enhance the

discriminative learning ability. Since xn and hn have

many identical features, combining both of them will

facilitate cn to decide whether to disregard or retain

features in xn. This design is the difference between

ours and the original Highway Network [20], where the

latter blinds regulate information based on xn only.

The transform function Fn has the same design as in

a Pre-activation Residual block [25], i.e. ReLU-Conv-

ReLU-Conv without Batch normalization.

4 Experiments

4.1 Experiment settings

We use Tensorflow as a framework to implement our

model. Our model is evaluated by comparing the test

accuracy with other architectures on the same dataset.
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Fig. 3: A proposed HNSR model

Nvidia GeForce GTX 1080 is utilized to conduct our

experiments.

4.2 Dataset

We use 800 training images from the DIV2K dataset [26]

as a training set. To fairly compare with other state-of-

the-art methods, we use four benchmark datasets for

testing: Set5 [27], Set14 [28], B100 [29], and Urban100

[30].

We use input image as three color channels RGB

rather than luminance (Y) channel in SRCNN [2]. For

each training mini-batch, we crop 32 random LR patches

and their corresponding HR patches as the input and the
ground truth, respectively. To augment the training data,

we randomly rotated by 90, 180, 270 and horizontally

flipped. We normalize the input by subtracting the mean

from each pixel and then dividing the result by the

standard deviation. We also detect and remove noisy

patches from the training dataset. We use mean squared

error (MSE) as the loss function. Given a training set

{IiLR, I
i
HR}Ni=1, which contains N pairs of LR inputs

and their HR counterparts. The goal of training is to

minimize the loss function:

L(θ) =

N∑

i=1

‖IiSR − IiHR‖2. (8)

where θ denotes the parameter set of our network. We

choose subpixel up-sampling as a method that is similar

to previous work.

4.3 Hyperparameters

The batch size is set to 32. The initial learning rate is

4e-4, which is decreased if validation loss does not de-

crease after two epochs. We stopped training when the

loss ceased to fall after three successive decreases in the

learning rate. We use a checkpoint of the best validation

accuracy to evaluate the test accuracy. Adam optimiza-

tion with default parameters is utilized for training.

4.4 Network depth

We set up a model with 18 highway blocks between the

first layer and the last up-scaling layer. Referring to Fig.

2, we use 3 x 3 convolutional filters in all Fn, and 1 x 1

convolutional filters in all Cn.

5 Results

5.1 Benchmark results

Here, we provide quantitative comparisons for x2, x3,

and x4 SR results in Table 1. We compare our proposed

method with bicubic interpolation and the following the

state-of-the-art SR method SRCNN [2], FSRCNN [31],

VDSR [3], DRCN [4], LapSRN [6], DRRN [5], Mem-

net [9], SelNet [32], and CARN [10], which were consid-
ered as small-size models. Following [2], we evaluated

the performance with the Peak Signal-to-Noise Ratio

(PSNR) and structural similarity index (SSIM [33]) on

the Y channel (luminance) after transforming the im-

ages to the YCbCr space. As can be seen from Table

1, our proposed model achieved better performance in

terms of SSIM, especially with large testing datasets

such as Urban 100 and B100. Our PSNRs are slightly

lower than those of CARN [10]. It may be linked to

underfit problems in gates, with a small number of the

parameter (around 64 x 1 x 1 x 64 = 4096 parameters)

each block functioning with the data of around 1,000k

patches. Therefore, it is important to increase expressive

transformations for carry gate in our networks.
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Table 1: Average PSNR/SSIMs for scale 2x, 3x and 4x. Red color indicates the best, blue color indicates the second

best performance, and missing information that was not provided by the authors is marked by [-/-].

Scale Model Params
Set5 Set14 B100 Urban100

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

2

SRCNN 57K 36.66/0.9542 32.42/0.9063 31.36/0.8879 29.50/0.8946

FSRCNN 12K 37.00/0.9558 32.63/0.9088 31.53/0.8920 29.88/0.9020

VDSR 665K 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140

DRCN 1,774K 37.63/0.9588 33.04/0.9118 31.85/0.8942 30.75/0.9133

LapSRN 813K 37.52/0.9590 33.08/0.9130 31.80/0.8950 30.41/0.9100

DRRN 297K 37.74/0.9591 33.23/0.9136 32.05/0.8973 31.23/0.9188

MemNet 677K 37.78/0.9597 33.28/0.9142 32.08/0.8978 31.31/0.9195

SelNet 974K 37.89/0.9598 33.61/0.9160 32.08/0.8984 -/-

IDN 796K 37.83/0.9600 33.30/0.9148 32.08/0.8985 31.27/0.9196

CARN 1,592K 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256

HNSR (ours) 1,487K 37.89/0.9603 33.33/0.9158 32.13/0.8999 31.49/0.9322

3

SRCNN 57K 32.75/0.9090 29.28/0.8209 28.41/0.7863 26.24/0.7989

FSRCNN 12K 33.16/0.9140 29.43/0.8242 28.53/0.7910 26.43/0.8080

VDSR 665K 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279

DRCN 1,774K 33.82/0.9226 29.76/0.8311 28.80/0.7963 27.15/0.8276

DRRN 297K 34.03/0.9244 29.96/0.8349 28.95/0.8004 27.53/0.8378

MemNet 677K 34.09/0.9248 30.00/0.8350 28.96/0.8001 27.56/0.8376

SelNet 974K 34.27/0.9257 30.30/0.8399 28.97/0.8025 -/-

IDN 796K 34.11/0.9253 29.99/0.8354 28.95/0.8013 27.42/0.8359

CARN 1,592K 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493

HNSR(ours) 1,487K 34.27/0.9262 30.06/0.8391 29.04/0.8053 28.04/0.8515

4

SRCNN 57K 30.48/0.8628 27.49/0.7503 26.90/0.7101 24.52/0.7221

FSRCNN 12K 30.71/0.8657 27.59/0.7535 26.98/0.7150 24.62/0.7280

VDSR 665K 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524

DRCN 1,774K 31.53/0.8854 28.02/0.7670 27.23/0.7233 25.14/0.7510

LapSRN 813K 31.54/0.8850 28.19/0.7720 27.32/0.7280 25.21/0.7560

DRRN 297K 31.68/0.8888 28.21/0.7720 27.38/0.7284 25.44/0.7638

MemNet 677K 31.74/0.8893 28.26/0.7723 27.40/0.7281 25.50/0.7630

SelNet 974K 32.00/0.8931 28.49/0.7783 27.44/0.7325 -/-

IDN 796K 31.82/0.8903 28.25/0.7730 27.41/0.7297 25.41/0.7632

CARN 1,592K 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837

HNSR(ours) 1,487K 31.98/0.8927 28.34/0.7775 27.53/0.7359 25.97/0.7840
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5.2 Visual performance

1). Comparison with skip connections

Since the learning rate of 4e-4 is not optimal for skip
connection-based model as being discussed previously,

we choose it as 1e-4 for a fair comparison. As can be seen

from Fig. 4, the highway-based model show marginally

faster convergence than skip-based model right from

the beginning, achieving a 27 dB accuracy at a step

of 13.6k compared with 23.4k in the model with skip

connections. At the step of 604k, the skip-based model

is unable to improve further, while highway-based meth-

ods continue to learn more before stopping at the step

of 676k. This observation is compatible with the results

in Fig. 5, where we evaluate the loss of training and

validation at the end of each epoch.
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Fig. 4: Training PSNR of the model with different types

of connections. All parameters were initialized with the

same seed values.

As can be seen from Fig. 5, the highway-based mod-

els outperform those using skip-connections in both train

and validation evaluation. Increasing the learning rate

to 4e-4 enables our model to converge faster for choosing

a better optimal solution. In contrast, the performance

of the skip connection-based model at that learning rate

is worst, which verifies our observation in Fig. 1. With

the same initialization, our model takes the benefit of

convex combination property in highway connection,

speeds up the training convergence. Meanwhile, the pro-

posed attention mechanism enhances the discriminative

learning ability, and enables to be further converged.
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Fig. 5: Training and validation loss of models with dif-

ferent connections and learning rates.

2). Visual gate unit

To examine the attention of gates, we extract the carry

gate, which is a sigmoid function. We average the feature

map of all the channel dimensions, then normalized to

a range from 0 to 1, before associating with a heat map.

Note that the gates regulate the information; they do

not capture features to feed to the next layer. As seen in

Fig. 6, the carry gates do not assign the same priority to

a different position but give distinct attention to some

specific regions. Because the CNNs have complicated

interaction, it is difficult to explain why each gate gives

particular attention. However, we can see that the focus

on on one specific area is reducing or emphasising on

the successor layer. Finally, the carry gate 18 achieves

a balance for focused intensity.

3). Visual performance on test images

As seen from Fig. 7, for image 067, most of the com-

pared methods produce blurring artifacts along the diag-

onal lines, while our HNSR produces more sharp, faithful

details. To make a fair comparison, we use image 083,

which achieved slightly lower PSNR/SSIM, to demon-

strate the details reconstruction ability. As seen from

Fig. 8, most of the compared methods cannot recover

the lattices and would suffer from blurring artifacts. In

contrast, our HNSR can alleviate the blurring artifacts

better and recover more details. It can be explained

by the help of the gating mechanism, to forget irrele-

vant parts instead of remembering all features from the

previous layer. Such obvious comparisons demonstrate

that the gating mechanism provides more a powerful
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(a) Carry gate 1 (b) Carry gate 2 (c) Carry gate 3 (d) Carry gate 4 (e) Carry gate 5 (f) Carry gate 6

(g) Carry gate 7 (h) Carry gate 8 (i) Carry gate 9 (j) Carry gate 10 (k) Carry gate 11 (l) Carry gate 12

(m) Carry gate 13 (n) Carry gate 14 (o) Carry gate 15 (p) Carry gate 16 (q) Carry gate 17 (r) Carry gate 18

0.0
0.2

0.4
0.6

0.8
1.0

Fig. 6: The attention of 18 carry gates in 18 HNSR blocks on the image of a “baby” in Set5. The colormap from 0

to 1 shows the increasing level of attention on a particular area on the image.

representational ability to extract sophisticated features

from the LR space. While focusing on recovering high-

frequency details, however, the HNSR model pays less

attention to low-frequency information. It is typically

the behavior of attention-based networks to focus on

selective feature maps that more important for the end

task. This may be considered a promising method for

saliency detection [34, 35], where the attentional abil-

ity focusing on the region of interests (ROIs) play an

important key. Besides, by using 1 x 1 convolutional fil-

ters, our attention mechanism regulates the information

base on the cross-channel correlations. It is possible to

(a) Image067 from Urban100

(b) HR
(PSNR/SSIM)

(c) Bicubic
(16.98/0.7041)

(d) LapSRN
(18.60/0.8358)

(e) IDN
(18.77/0.8413)

(f) CARN
(19.38/0.8712)

(g) Ours
(19.46/0.8719)

Fig. 7: Visual qualitative comparison on the Image067, Urban100 dataset, magnified by factor of 4.
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(a) Image083 from Urban100

(b) HR
(PSNR/SSIM)

(c) Bicubic
(20.51/0.5578)

(d) LapSRN
(21.90/0.6767)

(e) IDN
(21.81/0.6740)

(f) CARN
(22.30/0.7011)

(g) Ours
(22.21/0.6982)

Fig. 8: Visual qualitative comparison on the Image083, Urban100 dataset, magnified by factor of 4.

investigate the application in channel selection or band

selection [36].

6 Conclusion

Our proposed SISR model has a similar structure as

ResNet except for using highway connections instead of

residual connections. It achieved high performance and

strong recovery capability in the textured area in com-

parison with recent model architectures. Moreover, it
does not require implementing a complicated structure

and enables stable training with less problem of gradi-

ent exploding or dying neuron. As this architecture has

achieved outstanding performance, we intend to bound

parameters to perform contraction mapping, which can

further lead to speed up convergence. We also plan to

generalize our method for other applications, such as hy-

perspectral images, as well as real-time super-resolution

image reconstruction in mobile environments.
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