Skip to main content

Advertisement

Log in

Network algorithm real-time depth image 3D human recognition for augmented reality

  • Special Issue Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

This paper studies the application of augmented reality real-time depth image technology to 3D human motion recognition technology. The accuracy and real-time performance of sensor-based 3D human reconstruction are affected by visual characteristics and illumination changes. Features are not easily extracted and cannot be tracked, leading to failures in the 3D reconstruction of the human body. Based on this system, the sensor-based visual inertial initialization algorithm is studied, which is integrated in the two-frame image time interval to provide accurate initial values for vision-based motion estimation, improve the accuracy of the calculated posture, and finally improve the accuracy of the 3D reconstruction system. Based on the relationship between the depth image and the distance and reflectivity, a model for correcting the distance error and reflectivity error of the depth image is established to improve the accuracy of the depth image, and finally the accuracy of the three-dimensional reconstruction of the human body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ge, L., Liang, H., Yuan, J., et al.: Real-time 3D hand pose estimation with 3D convolutional neural networks. IEEE Trans. Pattern Anal. Mach. Intell. 41(4), 956–970 (2018a)

    Article  Google Scholar 

  2. Xu, W., Chatterjee, A., Zollhoefer, M., et al.: Mo 2 Cap 2: real-time mobile 3D motion capture with a cap-mounted Fisheye camera. IEEE Trans. Visual Comput. Graphics 25(5), 2093–2101 (2019)

    Article  Google Scholar 

  3. Thilahar, R., Sivaramakrishnan, R.: Fuzzy neuro-genetic approach for feature selection and image classification in augmented reality systems. Int. J. Robot. Autom. 8(3), 194–204 (2019)

    Google Scholar 

  4. Mehta, D., Sridhar, S., Sotnychenko, O., et al.: Vnect: real-time 3D human pose estimation with a single RGB camera. ACM Trans. Graphics 36(4), 1–14 (2017)

    Article  Google Scholar 

  5. Yao, Z., Liu, Y., Ji, Z., et al.: 3D driver pose estimation based on joint 2D–3D network. IET Comput. Vis. 14(3), 84–91 (2020)

    Article  Google Scholar 

  6. He, H., Liu, G., Zhu, X., et al.: Interacting multiple model-based human pose estimation using a distributed 3D camera network. IEEE Sens. J. 19(22), 10584–10590 (2019)

    Article  Google Scholar 

  7. Guo, F., He, Z., Zhang, S., et al.: Estimation of 3D human hand poses with structured pose prior. IET Comput. Vis. 13(8), 683–690 (2019)

    Article  Google Scholar 

  8. Li, C., Sun, X., Li, Y.: Information hiding based on augmented reality. Math. Biosci. Eng. 16(5), 4777–4787 (2019)

    Article  Google Scholar 

  9. Alhaija, H.A., Mustikovela, S.K., Mescheder, L., et al.: Augmented reality meets computer vision: efficient data generation for urban driving scenes. Int. J. Comput. Vis. 126(9), 961–972 (2018)

    Article  Google Scholar 

  10. Gao, Q.H., Wan, T.R., Tang, W., et al.: Object registration in semi-cluttered and partial-occluded scenes for augmented reality. Multimed. Tools Appl. 78(11), 15079–15099 (2019)

    Article  Google Scholar 

  11. Kim, S.J., Kim, S., Lee, D., et al.: Depth-map estimation using combination of global deep network and local deep random forest. Electron. Imaging 2019(16), 4-1-4–5 (2019)

    Article  Google Scholar 

  12. Hetherington, J., Lessoway, V., Gunka, V., et al.: SLIDE: automatic spine level identification system using a deep convolutional neural network. Int. J. Comput. Assist. Radiol. Surg. 12(7), 1189–1198 (2017)

    Article  Google Scholar 

  13. Kim, J., Jung, H., Kang, M.A., et al.: 3D human-gesture interface for fighting games using motion recognition sensor. Wirel. Pers. Commun. 89(3), 927–940 (2016)

    Article  Google Scholar 

  14. Nishio, T., Okamoto, H., Nakashima, K., et al.: Proactive received power prediction using machine learning and depth images for mm wave networks. IEEE J. Sel. Areas Commun. 37(11), 2413–2427 (2019)

    Article  Google Scholar 

  15. Hu, Z., Hu, Y., Wu, B., et al.: Hand pose estimation with multi-scale network. Appl. Intell. 48(8), 2501–2515 (2018)

    Article  Google Scholar 

  16. Davies, R., Wilson, I., Ware, A.: Stereoscopic human detection in a natural environment. Ann. Emerg. Technol. Comput. 2(2), 15–23 (2018)

    Article  Google Scholar 

  17. Tong, H., Wan, Q., Kaszowska, A., et al.: ARFurniture: augmented reality interior decoration style colorization. Electron. Imaging 2019(2), 175–179 (2019)

    Article  Google Scholar 

  18. Togootogtokh, E., Shih, T.K., Kumara, W., et al.: 3D finger tracking and recognition image processing for real-time music playing with depth sensors. Multimed. Tools Appl. 77(8), 9233–9248 (2018)

    Article  Google Scholar 

  19. Kumara, W., Yen, S.H., Hsu, H.H., et al.: Real-time 3D human objects rendering based on multiple camera details. Multimed. Tools Appl. 76(9), 11687–11713 (2017)

    Article  Google Scholar 

  20. Ge, L., Liang, H., Yuan, J., et al.: Robust 3D hand pose estimation from single depth images using multi-view CNNs. IEEE Trans. Image Process. 27(9), 4422–4436 (2018b)

    Article  MathSciNet  Google Scholar 

  21. Hoang, V.T., Jo, K.H.: 3-D human pose estimation using cascade of multiple neural networks. IEEE Trans. Ind. Inf. 15(4), 2064–2072 (2018)

    Article  Google Scholar 

  22. Kim, H.J., Kim, B.H.: Implementation of young children English education system by AR type based on P2P network service model. Peer-to-Peer Network. Appl. 11(6), 1252–1264 (2018)

    Article  Google Scholar 

  23. Alghabri, A.O., Osman, F.H., Ahmed, N.Y.: FPGA-based real time hand gesture and AR marker recognition and tracking for multi augmented reality applications. Arab. J. Nucl. Sci. Appl. 50(3), 66–76 (2017)

    Google Scholar 

  24. Albu, V.: Measuring customer behavior with deep convolutional neural networks. BRAIN Broad Res. Artif. Intell. Neurosci. 7(1), 74–79 (2016)

    Google Scholar 

  25. Rameau, F., Ha, H., Joo, K., et al.: A real-time augmented reality system to see-through cars. IEEE Trans. Visual Comput. Graphics 22(11), 2395–2404 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Sichuan education informatization application and Development Research Center: Research on the innovation of AR technology in the field of basic education (no.: JYXX20-034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renyong Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, R., Sun, M. Network algorithm real-time depth image 3D human recognition for augmented reality. J Real-Time Image Proc 18, 307–319 (2021). https://doi.org/10.1007/s11554-020-01045-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-020-01045-z

Keywords

Navigation