Skip to main content
Log in

Temporal synchronization framework of machine-vision cameras for high-speed steel surface inspection systems

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

High-speed industrial machine-vision (MV) applications such as surface inspection of steel sheets necessitate synchronous operation of multiple high-resolution cameras. Synchronization of cameras in the microsecond band is necessary to ensure accurate frame matching while melding images together. Existing approaches for synchronization employ dedicated electronic circuits or network-time-protocol (NTP) whose accuracies are in the millisecond band. Conversely, IEEE-1508 precision-time-protocol (PTP) synchronizes computers in highly accurate industrial measurement and control networks. Synchronization algorithms using PTP involve synchronizing computers connected to cameras. Although the computers synchronize in the microsecond band, the cameras synchronize in the millisecond band. Moreover, PTP is practically not used for synchronizing multiple devices due to the high bandwidth utilization of the network. This paper proposes a temporal synchronization algorithm and framework with two-way communication with timestamps and estimates mean path delays. Unicast transmission forms the basis of the synchronization framework, so that the network utilization is minimal, thereby ensuring the necessary bandwidth is available for image transmission. Experimental results show that the proposed approach outperforms the existing methodologies with synchronization accuracies in the microsecond band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Horst, R., Negin, M.: Vision system for high-resolution dimensional measurements and on-line SPC: web process application. IEEE Trans. Ind. Appl. 28, 993–997 (1992)

    Article  Google Scholar 

  2. Jain, R., Kasturi, R., Schunck, B.G.: Machine vision. McGraw-Hill Inc, New York (1995)

    Google Scholar 

  3. Nayar, S.: Catadioptric omnidirectional camera. In: Proceedings of IEEE computer society conference on computer vision and pattern recognition, pp. 482–488 (1997)

  4. Lamkin, M., Ringgenberg, K., Lamkin, J.: Distributed multi-aperture camera array. US Patent US 2019 / 0246044 A1 (2019)

  5. Keep one eye out (2012) [Online]. https://www.aviationtoday.com/2011/12/01/keep-one-eye-out/. Accessed 1 May 2020

  6. Advanced distributed aperture system (adas) [Online]. https://www.ainonline.com/aviation-news/defense/2012-07-08/raytheon-adas-aids-helicopter-safety. Accessed 6 May 2020

  7. Sanders-Reed, J., Koon, P.: Vision systems for manned and robotic ground vehicles. Proc. SPIE 7692, 1–12 (2010)

    Google Scholar 

  8. Luo, Q., Fang, X., Liu, L., et al.: Automated visual defect detection for flat steel surface: a survey. IEEE Trans. Instrum. Meas. 69(3), 626–644 (2020)

    Article  Google Scholar 

  9. Sugimoto, T., Kawaguchi, T.: Development of a surface defect inspection system using radiant light from steel products in a hot rolling line. IEEE Trans. Instrum. Meas. 47, 409–416 (1998)

    Article  Google Scholar 

  10. Ghorai, S., Mukherjee, A., Gangadaran, M., et al.: Automatic defect detection on hot-rolled flat steel products. IEEE Trans. Instrum. Meas. 62, 612–621 (2013)

    Article  Google Scholar 

  11. Stojanovic, R., Mitropulos, P., Koulamas, C., et al.: Real-time vision-based system for textile fabric inspection. Real Time Imaging 7, 507–518 (2001)

    Article  Google Scholar 

  12. Meyer, F., Bahr, A., Lochmatter, T., et al.: Wireless GPS-based phase-locked synchronization system for outdoor environment. J. Biomech. 45(1), 188–190 (2012)

    Article  Google Scholar 

  13. Wilburn, B., Joshi, N., Vaish, V., et al.: High-speed videography using a dense camera array. Proc. IEEE CVPR 2, 294–301 (2004)

    Google Scholar 

  14. Litos, G., Zabulis, X., Triantafyllidis, G.: Synchronous image acquisition based on network synchronization. In: Proceedings of CVPR workshops, p. 167 (2006)

  15. Nguyen, H., Nguyen, D., Wang, Z., et al.: Real-time, high-accuracy 3D imaging and shape measurement. Appl. Opt. 54(1), A9–A17 (2015)

    Article  Google Scholar 

  16. Shrestha, P., Barbieri, M., Weda, H., et al.: Synchronization of multiple camera videos using audio-visual features. IEEE Trans. Multimed. 12(1), 79–92 (2010)

    Article  Google Scholar 

  17. Zini, L., Cavallaro, A., Odone, F.: Action-based multi-camera synchronization. IEEE J. Emerg. Sel. Top. Circuits Syst. 3(2), 165–174 (2013)

    Article  Google Scholar 

  18. Lei Hou, S., Hashimoto, K.: Illumination-based real-time contactless synchronization of high-speed vision sensors. In: 2008 IEEE international conference on robotics and biomimetics, pp. 1750–1755 (2009)

  19. Litos, G., Zabulis, X., Triantafyllidis, G.: Synchronous image acquisition based on network synchronization. In: Proc. the 2006 conference on computer vision and pattern recognition workshop, pp. 1–6 (2006)

  20. Mills, D.: Precision synchronization of computer network clocks. ACM SIGCOMM Comput. Commun. Rev 24(2), 28–43 (1994). (http://citeseer.nj.nec.com/mills94precision.html)

  21. IEEE standard for a precision clock synchronization protocol for networked measurement and control systems. IEEE Std 1588-2002, vol. l, pp. 1–154 (2002-10-31)

  22. Na, C., Obradovic, D., Scheiterer, R., et al.: Enhancement of the precision time protocol in automation networks with a line topology. In: Proceedings IFAC World Congr, Seoul, Korea (2008)

  23. Obradovic, D., Scheiterer, R., Na, C., et al.: Clock synchronization in industrial automation networks: comparison of different synchronization methods. In: Proc. 5th Int. Conf. Informat. Control, Autom, Robot., Funchal, Portugal (2008)

  24. Scheiterer, R., Obradovic, D., Na, C., et al.: Synchronization performance of the precision time protocol: effect of clock frequency drift on the line delay computation. In: Proc. WFCS, Dresden, Germany, pp. 243–246 (2008)

  25. Noda, A., Yamakawa, Y., Ishikawa, M.: High-speed object tracking across multiple networked cameras. In: Proceedings of the 2013 IEEE/SICE international symposium on system integration, pp. 913–918 (2013)

  26. Noda, A., Hirano, M., Yamakawa, Y., et al.: A networked high-speed vision system for vehicle tracking. In: 2014 IEEE sensors applications symposium, SAS, pp. 343–348 (2014)

  27. Noda, A., Yamakawa, Y., Ishikawa, M.: Frame synchronization for networked high-speed vision systems. In: SENSORS, pp. 269–272 (2014)

  28. Karthik, A.K., Blum, R.S., et al.: Recent advances in clock synchronization for packet-switched networks. In: Foundations and Trends® Signal Processing, vol. 13, no. 4, pp. 360–443 (2020)

  29. Okabe, R., Yabuki, J., Toyama, M.: Avoiding year 2038 problem on 32-bit linux by rewinding time on clock synchronization. In: 2020 25th IEEE international conference on emerging technologies and factory automation (ETFA), vol. 1, pp. 1019–1022. IEEE (2020)

  30. Waldhauser, S., Jaeger, B., Helm, M.: Time synchronization in time-sensitive networking. Network 51, 51–56 (2020)

    Google Scholar 

  31. Hanasz, S., Kuklewski, M., Kasprowicz, G., et al.: Concept of an enhanced accuracy onboard time synchronization via communication link. In: 2020 IEEE aerospace conference, pp. 1–6. IEEE (2020)

  32. Buhr, S., Kreißig, M., Protze, F., et al.: Subnanosecond time synchronization using a 100base-TX ethernet transceiver and an optimized PI-clock servo. IEEE Trans. Instrum. Meas. 70, 1–8 (2020)

    Article  Google Scholar 

  33. Khan, M.A., Hayes, B.: PTP-based time synchronisation of smart meter data for state estimation in power distribution networks. IET Smart Grid 3(5), 705–712 (2020)

    Article  Google Scholar 

  34. Chen, J., Yu, M., Dou, L.-H., et al.: A fast averaging synchronization algorithm for clock oscillators in nonlinear dynamical network with arbitrary time-delays. Acta Autom. Sin. 36(6), 873–880 (2010)

    Article  MathSciNet  Google Scholar 

  35. Windows subsystem for linux 2.0 released microsoft. Retrieved June 30, 2020. [Online]. https://docs.microsoft.com/en-us/windows/wsl/

  36. Wireshark 3.2.5 released. the wireshark foundation. Retrieved July 1, 2020. [Online]. https://www.wireshark.org/

Download references

Acknowledgements

The authors would like to express their gratitude and thank the Automation Division of Tata Steel, Jamshedpur, Jharkhand, India for giving us the opportunity and allowing us to use their state-of-the-art laboratory facilities to conduct this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasanth Subramanyam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subramanyam, V., Kumar, J. & Singh, S.N. Temporal synchronization framework of machine-vision cameras for high-speed steel surface inspection systems. J Real-Time Image Proc 19, 445–461 (2022). https://doi.org/10.1007/s11554-022-01198-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-022-01198-z

Keywords

Navigation