
Vol.:(0123456789)1 3

Journal of Real-Time Image Processing (2022) 19:517–527
https://doi.org/10.1007/s11554-022-01204-4

ORIGINAL RESEARCH PAPER

CPU and GPU real‑time filtering methods for dense surface metrology
using general matrix to matrix multiplications

R. Usamentiaga1 

Received: 24 August 2021 / Accepted: 1 February 2022 / Published online: 18 February 2022
© The Author(s) 2022

Abstract
Filtering is a required task in surface metrology for the identification of the components relevant for automated quality con-
trol. The calculation of real-time features about the surface is crucial to determining the mechanical and physical properties
of the inspected product. The computation efficiency of the filtering operations is a major challenge in surface metrology,
as current sensors provide massive volumes of data at very high acquisition rates. To overcome the challenges, this work
presents different real-time filtering solutions comparing the performance on the CPU and on the GPU, using modern hard-
ware. The proposed framework is focused on filtering techniques that can be expressed using a finite impulse response (FIR)
kernel that includes the Gaussian kernel, the most common filtering technique recommended by ISO and ASME standards.
This research work proposes variations of the double FIFO and double circular filters. The filters are transformed into a
series of general matrix to matrix multiplications, which can be run extremely efficiently on different architectures. The
proposed filtering approach provides superior performance compared with previous works. Additionally, tests are carried
out to quantify the performance of the GPU in terms of data transfer and computation capabilities in order to diminish the
penalty imposed by data transfer from main memory to the GPU in real-time operations. Based on the results, an efficient
batch filtering technique is proposed that can be run on the GPU faster than the CPU even for small profile and kernel sizes,
offloading this task from the host CPU for optimal system and application response.

Keywords  Surface metrology · Real-time filtering · Laser profiling

1  Introduction

Surface metrology is a field of utmost importance in prod-
uct manufacturing that deals with the characterization of
surface topography [1]. The resulting topography provides
information about regular and irregular patterns, roughness,
waviness and dimensions of the inspected product, providing
the deviations of the surface from its intended shape. These
features are crucial to determining the mechanical and physi-
cal properties of the product, including friction or electrical
conductivity, but also the overall finishing quality according
to relevant standards. For example high friction can lead to
faster wear and shorter lifetimes and uneven flatness results
in heterogeneous rolled-product plastic deformations. Thus,

the evaluation of quality control features ensures compliance
with quality criteria, preventing failures and guaranteeing
the serviceability.

Despite a great development of measurement techniques,
surface metrology still presents a significant challenge [2].
Most measurement techniques are based on mechanical sty-
lus profilers or noncontact optical instruments [3]. Stylus
based methods are still the most common for surface topog-
raphy. However, they are time-consuming, which is a signifi-
cant limitation. Also, they require periodic maintenance, as
they are affected by wear [4].

Noncontact optical instruments determine the surface
topography of the inspected object through the intensity
registered in a sensor [5]. There is a large number of meth-
ods for optical surface metrology, but in general they can be
classified into two major categories, depending on whether
they require triangulation or not. Methods that do not require
triangulation are based on the physical nature of light, for
example about how the light travels in time or space [6].
Interferometry is the most accurate measurement technology

 *	 R. Usamentiaga
	 rusamentiaga@uniovi.es

1	 Department of Computer Science and Engineering,
University of Oviedo, Campus de Viesques, 33204 Gijón,
Asturias, Spain

http://orcid.org/0000-0003-0551-3203
http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-022-01204-4&domain=pdf

518	 Journal of Real-Time Image Processing (2022) 19:517–527

1 3

in this group [7]. However, it has a limited field of view and
range. Thus, this type of sensors is mostly used for micro-
scale surface metrology. Time-of-Flight (ToF) based surface
metrology greatly extends the field of view and range, but at
the cost of significantly reduced accuracy [8].

Interferometry-based techniques are the best choice
for extremely-high-accuracy in low range measurements,
and ToF-based techniques are good for low-accuracy and
large object sizes. The triangulation-based methods land in
between in terms of accuracy and range [9]. Therefore, they
are the preferred choice in many industrial applications [10].

There are many different configurations for triangula-
tion-based methods, but in the most basic form they use
one or more cameras and one emitter of structured light.
The most common approach for automated surface inspec-
tion in industrial applications is a configuration based on
a single camera and laser line projector. This method can
achieve high measurement accuracy in one direction. Moreo-
ver, in manufacturing production lines the products to be
inspected move forward along a roll path or on a conveyor
belt. This relative movement between the product and the
sensor allows the measurement of the whole surface meas-
urement without swiping the laser line, producing a dense
set of points (i.e., point cloud) that accurately represents the
surface topography.

The assessment of surface topography requires removing
unwanted elements from the measured surface geometry.
A common approach is to define a reference line or plane
about which deviations are measured. In general, the surface
is assumed to be comprised of different wavelengths. The
assessment requires the identification of the components
relevant for the required analysis, which is achieved using
a filtering operation. The filtering procedure performs the
separation of the surface topography into components with
different frequencies. The most common components are
referred to as noise, roughness, waviness and form [11]. Fil-
tering is a critical process for surface metrology to ensure
the accuracy of the assessment of surface topography.

A large variety of filtering techniques are used in sur-
face metrology. In all cases, the goal is to remove unwanted
components from the analyzed surface. Depending on the
particular application, this could require the elimination
of the roughness from the waviness or viceversa. The most
basic approach used to be implemented in hardware using a
resistor–capacitor (RC) network. However, nowadays analog
filtering has been replaced by digital filtering.

The computation efficiency of the digital filtering
operations is a major challenge in surface metrology.
Current sensors provide massive volumes of data at very
high acquisition rates. For example, recent profilometers
can measure profiles at an acquisition rate up to 10 kHz,
with each profile containing thousands of measurement
points. This type of sensors enable the extraction of dense

topographic information from products in manufacturing
lines that are moving very quickly, also without affecting
the productivity. However, the high production speed and
the massive volume of data generated requires extremely
efficient filtering techniques, particularly if filtering is
required to be applied in real-time with the manufactur-
ing process. These extremely demanding real-time require-
ments are commonly found in automated quality control,
where deviations from tolerance specifications of geomet-
rical features need to be detected very quickly. Based on
this approach, engineering workpieces are characterized
online, which ensures they can performs its designed func-
tions and the manufacturing process is operating accord-
ing to the specifications. This minimizes downtime, and
maximizes efficiency and overall product quality.

To overcome the challenges related to the filtering
of high volumes of dense topographic data in real-time,
this paper presents different real-time filtering alterna-
tives comparing the performance on the CPU and on the
GPU, using modern hardware. The proposed framework is
focused on filtering techniques that can be expressed using
a finite impulse response (FIR) kernel. This includes the
Gaussian filter, which is the most commonly used filter
in surface topography, recommended by ISO 16610 and
ASME B46 standards for establishing a reference surface
[12]. Other filters commonly used in signal processing,
such as the windowed-sinc, can also be expressed using a
FIR kernel. Moreover, these kernels can be easily trans-
formed to meet specific requirements: low-pass, high-pass,
band-pass or band-reject. The proposed approach can be
used with any of these kernels, making it versatile, flex-
ible, and suitable for a wide variety of applications. This
research work analyzes the most commonly used platforms
with different acceleration strategies: multicore CPUs and
GPUs [13]. This work presents filtering techniques based
on the most efficient methods previously described in the
literature for real-time filters: the double FIFO filter and
the double circular filter. The proposed filtering methods
are transformed into a series of general matrix to matrix
multiplications. This way, the proposed filtering approach
takes advantage of the extremely efficient code developed
in this field pushed by recent advances in deep learning
models, where general matrix to matrix multiplications are
the fundamental building block.

Hardware accelerators such as GPUs tend to be superior
to multicore CPUs both in run-time performance and energy
efficiency [14], but the advantages can be compensated by
the penalty imposed by data transfer. This work also ana-
lyzes GPU performance and bottlenecks. Based on this anal-
ysis, an efficient batch filtering technique is also proposed
that diminishes this penalty. This provides the opportunity
for data filtering on the GPU in real-time even for small
profiles, offloading the CPU from this task.

519Journal of Real-Time Image Processing (2022) 19:517–527	

1 3

The remainder of this paper is organized as follows. Sec-
tion 2 reviews filtering for surface texture analysis; Sect. 3
presents the proposed approach for efficient filtering in real-
time and the batch filtering technique to overcome the pen-
alty imposed by data transfers in real-time operations; Sect. 4
discusses the results obtained, including tests with real data;
Sect. 5 reports conclusions.

2 � Filtering in surface metrology

Surface metrology analyzes the form, waviness or roughness
on the surface of a manufactured product. Filtering is used
to distinguish relevant from irrelevant information. The most
common method is based on the Gaussian filter. This particu-
lar type of filter is classified as a Finite Impulse Response
(FIR) filter in digital signal processing [15]. This filter is usu-
ally implemented by convolving the input signal with the filter
kernel, which is equivalent to a multiplication in the frequency
domain. This later approach is only appropriate when the ker-
nel is very large.

Different filtering techniques have been standardized in
surface metrology [16]. The most common digital filtering
techniques are the envelope filter [17], the Gaussian filter [18],
the Gaussian regression filter [19], the spline filter [20] and the
wavelet filter [21]. International standards describe these fil-
ters, their parameters and provide guidance on the use, includ-
ing ISO 25178 [22], ASME B46.1 [23] and ISO 16610 [24].

In general, a signal x is created by sampling physical phe-
nomena at regular intervals of time. In surface metrology, a
signal is created by recording the topographic information
at equal intervals in the plane of the surface, i.e., signals are
sampled in the spatial domain. The sampling interval is impor-
tant, as a value too small can lead to a large number of highly
correlated data points while a value too large can result in
highly uncorrelated data, losing crucial spatial information.
Different methods to establish optimal sampling intervals have
been proposed in the literature [25]. In surface metrology, the
wavelength ( � ) is expressed in length units (meters), and the
spatial frequency ( � = 1∕� ) is expressed in cycles per meter.
Different techniques can be used to create regular spatial
sampling, such as encoders that detect the motion and trigger
acquisition signals

The kernel used in the Gaussian filter, standardized in ISO
16610 part 21, follows a Gaussian function, as can be seen in
(1), where i is the position from the origin of the kernel, and
� =

√

ln 2∕� = 0.4697 is a constant designed to provide 50%
transmission at a cutoff wavelength �c.

An alternative approach is the idealized filter windowed-
sinc, which is calculated by taking the Inverse Fourier

(1)h(i) =
1

��c
e
−�(

i

��c
)2

Transform of the ideal frequency response. The kernel is
given by (2), where fc is the normalized cutoff frequency.
This function presents abrupt discontinuities at the ends,
which create ripples in the passband and poor attenuation
in the stopband. The solution is to multiply the kernel by a
smoothing window, for example the Hamming or Blackman
windows.

The kernel shape of the Gaussian filter and the Windowed-
sinc smoothed with the Blackman are similar for small
lengths, but tend to differ when the window length is larger.

These kernels represent low-pass filters, but they can be
easily transformed into high-pass, band-pass or band-reject
kernels, making them very flexible and versatile. For exam-
ple, a high-pass filter kernel, hhp , can be calculated from a
low-pass filter kernel, hlp , using (3), where N is the length of
the kernel. Combining these filters, the separation of signals
into relevant components is straightforward. The separation
is based on the definition of different wavelengths cutoffs:
�s to separate shorter wavelengths considered noise from
roughness, �c to separate roughness from waviness, and �f
to separate waviness and longer wavelengths describing the
primary form.

Given a particular kernel h, a FIR filter of order N can be
implemented using the convolution sum described in (4),
where x[n] is the input signal and y[n] is the filtered signal

When working offline, the execution speed of the filter-
ing operation is not very relevant. However, in automated
quality control, real-time filtering is required to measure
product features during manufacturing. Different works
have evaluated the performance of Gaussian filters on the
GPU. A filtering approach using the GPU is presented in
[26]. The proposed approach has a speedup factor up to 4.8.
However, it is compared with an unoptimized Matlab imple-
mentation. In [27] another alternative approach is presented.
Results indicate the CPU-based implementation has better
performance on small images, but the situation is reversed
when large images are used. The research only evaluates
the performance with images, and it is not designed to work
in real-time. In [28], a filtering procedure is proposed with
multiple GPUs. The performance is compared with Matlab
on the CPU, but it does not propose a real-time comparison.
Results, again, indicate kernel launches in GPU present a

(2)h(i) =
sin (2�fci)

i�

(3)hhp(i) =

{

1 − hlp(i) if i = N∕2

−hlp(i) else

(4)y[n] =

N
∑

i=0

h[i] ⋅ x[n − i]

520	 Journal of Real-Time Image Processing (2022) 19:517–527

1 3

huge performance penalty for small images. In general, only
with large data sets the penalty for data transfer is com-
pensated. For small surface maps ( 512 × 512 ), even imple-
mentations based on two GPU based are slower than CPU
implementations due the required data transmissions and
kernel launches in GPU [29]. The CPU optimizations in all
these works are not clear. A different approach is presented
in [30], where the image is partitioned into blocks that are
processed in parallel by modern GPU architectures. This is
applicable to the parallel execution of 1D recursive filters.
This approach can be applied to offline Gaussian filtering,
reducing memory bandwidth over a sequence of recursive
filters.

An optimized implementation for FIR filters on multi-
core CPUs is presented in [31]. This work proposes different
strategies to filter height maps in real-time. Optimizations
are based on efficient strategies to store previous samples in
memory, CPU parallelism, SIMD instructions and cache-
line friendly data structures. Results indicate the double
FIFO (first in first out) is optimal data structure to store data
in memory, achieving 40.58 � s per profile, 5000 times faster
than the conventional spline filter. The proposed approach is
not compared with GPU-based implementations.

3 � Real‑time filtering approach

The proposed filtering approach in this work is to design a
procedure based on the most efficient methods previously
described in the literature for real-time filters: the double
FIFO filter and the double circular filter. However, rather
than designing specific optimizations to run these methods
on particular CPU or GPU architectures, in this work the
methods are transformed into a series of general matrix to
matrix multiplications (GEMM). In previous works, the
implementation of the filtering techniques was optimized for
particular CPU and GPU architectures based on specific par-
allel execution models. For example, in [31] the optimization
is based on parallels execution on multicore CPUs taking
advantage of SIMD instructions (single instruction, multiple
data). In [28] specific CUDA kernels are implemented to run
the filtering process on multiple GPUs. This work proposes
a different approach much more flexible and versatile: every
filter operation is transformed into a matrix multiplication.
Then, highly efficient implementations of these operations
are used to make the proposed filtering approach provide
superior performance than previous works.

3.1 � Efficient matrix operations

Matrix multiplication is a fundamental mathematical opera-
tions used in many fields. Thus, very efficient libraries have
been implemented to run these operations. The defacto

standard in high-performance computing is BLAS (Basic
Linear Algebra Subprograms), which is a specification that
describes a set of low-level routines and operations for per-
forming common linear algebra operations, such as vector,
matrix–vector, and matrix–matrix operations. Many vendors
provide optimized BLAS implementations for their hard-
ware. Two of the most commonly used implementations are
the Intel MKL (Math Kernel Library), supporting Intel x86
32-bits and 64-bits CPUs, and cuBLAS for CUDA Nvidia
GPUs. These two implementations provide highly efficient
and finely tuned BLAS implementations for their processors.
Many other implementations exists, such as rocBLAS for
AMD GPUs using ROCm, or OpenBLAS for different CPU
architectures including x86-64, RISCV, ARM64, MIPS or
Sparc.

3.2 � The double FIFO filter and the double circular
filter

The double FIFO filter and the double circular filter are two
possible alternatives to implement real-time FIR filters.
Thus, they can be used to implement a real-time Gauss-
ian filter for surface metrology. Considering an optical
surface metrology method based on triangulation, where a
single line projector is used and there is a relative move-
ment between the sensor and the inspected object, a single
height profile is acquired at a time. This profile contains a
variable number of points that describe the height across the
object. The point x[i, j] represents the height of the profile i
at the position j. The proposed real-time filter is applied to
all sequences of point positions from j = 0 to P − 1 , where
P is the number of points per profile. The filtering operation
is applied for each acquired height profile considering previ-
ous samples, producing a filtered profile with a delay that
depends on the length of the kernel.

The double FIFO filter is a variation of the FIFO filter.
The difference is that while the FIFO filter requires shifting
the buffer every time a new profile is acquired, the dou-
ble FIFO stores the sequence of profiles and only performs
large block memory transfers periodically. This provides the
opportunity for large data transfers rather than transferring
single profiles. This way, memory access is more efficient
and the execution time is reduced.

The procedure is illustrated in Fig. 1, considering profiles
with 4 points, P = 4 from 0 to 3, and a filter kernel of size 5,
K = 5 from 0 to 4. The number of rows in the storage matrix
that contains the sequence of profiles is almost twice the size
of the kernel: K ∗ 2 − 1 (row 0 is a the top of the matrix);
and the number of columns is equal to the number of points
per profile. A profile is stored in one matrix row. The first
profile is stored at row K − 1 . Next profiles are stored by
decreasing the insertion row, as can be seen in Fig. 1b and c
up until the profile is stored at the first row of the matrix. The

521Journal of Real-Time Image Processing (2022) 19:517–527	

1 3

next profile wraps around the insert position to row K − 1 .
Also, the submatrix of profiles above the current position is
copied to the submatrix below the current position, as can
be seen in Fig. 1d. The profiles from the current position to
that position plus K − 1 contain the block of profiles to be
filtered (the most recent profiles). After the matrix is filled,
a steady state is reached where the most recent profiles are
always stored in a contiguous block of memory starting from
the last insert position. Further details are given in [31].

The double circular filter is based on the circular filter.
Similar to the double FIFO filter, this filter doubles the allo-
cated size to store the previous profiles, maintaining two
identical memory regions redundantly. This increased stor-
age size is used to improve memory access.

Considering profiles with 4 points, P = 4 from 0 to 3,
and a filter kernel of size 5, K = 5 from 0 to 4, the double
circular buffer maintains two identical regions of memory.
Thus, the storage matrix is 2 × K rows and P columns. Two
row indexes are used: the top index goes from K − 1 to 0, and
the bottom index goes from 2 × K − 1 to K. Each acquired
profile is stored twice, at the positions indicated by each
index. When one index reaches the beginning of a region, it
is wrapped around to the end of that region. In this case, no
memory copy is necessary when one index is restarted. The
most recent profiles are always stored in a contiguous block
of memory starting from the top index.

The procedure is illustrated in Fig. 2. The first profile is
stored at row K − 1 and K × 2 − 1 redundantly. Next profiles
decrement the position of both indexes, as can be seen in
Fig. 2b and c. When the positions reach the beginning of
each region, they are restarted to the initial positions and the
process continues, as can be seen in Fig. 2d. Following this
approach, at any moment the most recent profiles are always

stored in a contiguous block of memory starting from the top
index. Further details are given in [31].

Both the double FIFO and the double circular filters cre-
ate a contiguous block of memory where the most recent
profiles are stored. This block is a submatrix with a num-
ber of rows equal to the length of the kernel and the num-
ber of columns equal to the length of the profile ( K × P ).
The kernel can be multiplied by this submatrix to obtain
the filtered profile, as can be seen in Fig. 3. The result of
the matrix multiplication is the delayed filtered profile
( [1 × K] × [K × P] = [1 × P] ). A FIR filter has a linear phase
response where the higher the order, the longer the time
delay too. Thus, the resulting profile has a delay that depends
on the length of the FIR kernel. When using a kernel of size
K, the delay is (K − 1)∕2 . Following this approach, memory
access is very efficient and the filtering procedure is trans-
formed into a matrix multiplication applied in real-time with
the profile acquisition.

3.3 � The double FIFO batch filter

This work proposes an additional variation of the double
FIFO filter: the double FIFO batch filter. In this filter, pro-
files are filtered in batches rather than one by one. This gen-
erates and additional delay. Now the delay not only depends
on the length of the filter but also on the length of the batch.

A batch of profiles is created in main memory consisting
in a tunable number of profiles. The batch is transferred to
the GPU only when the batch is full, where it is stored as
a contiguous block of memory in the storage matrix. Then,
filtering is applied to all the profiles in the batch. Moreover,
the size of the storage matrix is increased (only limited by

x[n,0] x[n,1] x[n,2] x[n,3]

(a)

x[n-1,0]

x[n,0]

x[n-1,1]

x[n,1]

x[n-1,2]

x[n,2]

x[n-1,3]

x[n,3]

(b)

x[n-4,0]

x[n-3,0]

x[n-2,0]

x[n-1,0]

x[n,0]

x[n-4,1]

x[n-3,1]

x[n-2,1]

x[n-1,1]

x[n,1]

x[n-4,2]

x[n-3,2]

x[n-2,2]

x[n-1,2]

x[n,2]

x[n-4,3]

x[n-3,3]

x[n-2,3]

x[n-1,3]

x[n,3]

(c)

x[n-1,0]

x[n-2,0]

x[n-3,0]

x[n-4,0]

x[n-1,1]

x[n-2,1]

x[n-3,1]

x[n-4,1]

x[n-1,2]

x[n-2,2]

x[n-3,2]

x[n-4,2]

x[n-1,3]

x[n-2,3]

x[n-3,3]

x[n-4,3]

x[n-1,0]

x[n-2,0]

x[n-3,0]

x[n-4,0]

x[n-1,1]

x[n-2,1]

x[n-3,1]

x[n-4,1]

x[n-1,2]

x[n-2,2]

x[n-3,2]

x[n-4,2]

x[n-1,3]

x[n-2,3]

x[n-3,3]

x[n-4,3]

x[n,0] x[n,1] x[n,2] x[n,3]

(d)

Fig. 1   Filtering using the double FIFO filter for K = 5 . a First profile
is stored at row K − 1 . b Second profile is stored at position K − 2 . c
Fifth profile is stored at position 0. d The next profile is stored again

at position K − 1 and the old data at the end of the buffer is overwrit-
ten with the most recent profiles

522	 Journal of Real-Time Image Processing (2022) 19:517–527

1 3

the GPU memory). This way, the number of data transfers is
reduced while the size of the block transferred is increased.

The procedure is illustrated in Fig. 4 considering profiles
P = 4 and a filter kernel of K = 5 and a batch of two pro-
files, B = 2 . The batch consisting of two profiles is stored
in the storage matrix, which contains previous profiles in
ascending row order. Then the kernel is multiplied by the

two highlighted matrices, resulting in two filtered profiles.
As can be seen, the process can vary the batch size with no
major modifications. The most recent profiles are still stored
in a contiguous block of memory starting from the insertion
index. However, in this case the data block transferred from
main memory to the GPU is increased, improving the overall
efficiency of the filtering procedure. The batch modification

x[n,0] x[n,1] x[n,2] x[n,3]

x[n,0] x[n,1] x[n,2] x[n,3]

(a)

x[n-1,0]

x[n,0]

x[n-1,1]

x[n,1]

x[n-1,2]

x[n,2]

x[n-1,3]

x[n,3]

x[n-1,0]

x[n,0]

x[n-1,1]

x[n,1]

x[n-1,2]

x[n,2]

x[n-1,3]

x[n,3]

(b)

x[n-4,0]

x[n-3,0]

x[n-2,0]

x[n-1,0]

x[n,0]

x[n-4,1]

x[n-3,1]

x[n-2,1]

x[n-1,1]

x[n,1]

x[n-4,2]

x[n-3,2]

x[n-2,2]

x[n-1,2]

x[n,2]

x[n-4,3]

x[n-3,3]

x[n-2,3]

x[n-1,3]

x[n,3]

x[n-4,0]

x[n-3,0]

x[n-2,0]

x[n-1,0]

x[n,0]

x[n-4,1]

x[n-3,1]

x[n-2,1]

x[n-1,1]

x[n,1]

x[n-4,2]

x[n-3,2]

x[n-2,2]

x[n-1,2]

x[n,2]

x[n-4,3]

x[n-3,3]

x[n-2,3]

x[n-1,3]

x[n,3]

(c)

x[n-4,0]

x[n-3,0]

x[n-2,0]

x[n-1,0]

x[n-4,1]

x[n-3,1]

x[n-2,1]

x[n-1,1]

x[n-4,2]

x[n-3,2]

x[n-2,2]

x[n-1,2]

x[n-4,3]

x[n-3,3]

x[n-2,3]

x[n-1,3]

x[n-4,0]

x[n-3,0]

x[n-2,0]

x[n-1,0]

x[n-4,1]

x[n-3,1]

x[n-2,1]

x[n-1,1]

x[n-4,2]

x[n-3,2]

x[n-2,2]

x[n-1,2]

x[n-4,3]

x[n-3,3]

x[n-2,3]

x[n-1,3]

x[n,0] x[n,1] x[n,2] x[n,3]

x[n,0] x[n,1] x[n,2] x[n,3]

(d)

Fig. 2   Filtering using the double circular filter. a First profile is stored
at row K − 1 and 2 × K − 1 . b Second profile is stored at row K − 2
and the corresponding row in the bottom region. c Fifth profile is

stored at the beginning of each region. d The next profile is stored
again at position K − 1 and 2 × K − 1 , and the old data is overwritten
with the most recent profiles

Fig. 3   Filtering using matrix
multiplication: the kernel is
multiplied by the submatrix
containing the most recent
profiles

x[n-1,0]

x[n-2,0]

x[n-3,0]

x[n-4,0]

x[n-1,1]

x[n-2,1]

x[n-3,1]

x[n-4,1]

x[n-1,2]

x[n-2,2]

x[n-3,2]

x[n-4,2]

x[n-1,3]

x[n-2,3]

x[n-3,3]

x[n-4,3]

x[n,0] x[n,1] x[n,2] x[n,3]

h[0] h[1] h[2] h[3] h[4] X = y[n-2,0] y[n-2,1] y[n-2,2] y[n-2,3]

Fig. 4   Filtering using the batch
filtering approach

x[n-2,0]

x[n-3,0]

x[n-4,0]

x[n-5,0]

x[n-2,1]

x[n-3,1]

x[n-4,1]

x[n-5,1]

x[n-2,2]

x[n-3,2]

x[n-4,2]

x[n-5,2]

x[n-2,3]

x[n-3,3]

x[n-4,3]

x[n-5,3]

x[n-1,0]

x[n,0]

x[n-1,1]

x[n,1]

x[n-1,2]

x[n,2]

x[n-1,3]

x[n,3]

h[0] h[1] h[2] h[3] h[4] X =

y[n-3,0] y[n-3,1] y[n-3,2] y[n-3,3]

y[n-2,0] y[n-2,1] y[n-2,2] y[n-2,3]

523Journal of Real-Time Image Processing (2022) 19:517–527	

1 3

is only applied to the double FIFO filter. Nevertheless, a
similar approach could be used to create a batched version
for the double circular filter.

4 � Results and discussion

4.1 � The double FIFO filter and the double circular
filter

The real-time performance of the proposed filters are ana-
lyzed in this section. In all cases, the filters perform the same
operation, providing the same results. The execution speed
of each experiment is analyzed.

The most common scenarios found in surface metrol-
ogy using triangulation-based methods are profiles with a
length from 500 to 8000 points. Extended profile lengths
are considered to evaluate the performance of the proposed
approaches with future sensors. The considered kernel
lengths go from 101 to 401, which could be valid lengths
for usual low-pass filters of 400 mm when using a sampling
interval of 10 mm.

Measuring execution time is a difficult but critical aspect
to analyze the performance of the considered filters. The
proposed testing procedure first perform a warmup while
the storage matrix is filled. Then, the filter is run to find the
minimum number of replicates that need to be run while
still keeping measurement overhead low (to a small fraction
of the overall run time). Finally, it runs as many replicates
of the filter as required providing reliable estimates of the
measurements. In addition, the testing procedure synchro-
nizes the CPU and CUDA when benchmarking on the GPU.

All the reported experiments are performed on a com-
puter with an Intel Core i7 9700K CPU running with 8 cores
at 3.6 GHz and 64 GB of RAM. The computer also has a
GeForce RTX 2080 Ti Turbo GPU with 11 GB of RAM.
For the experimentation on the CPU the Intel MKL library
is used [32], with optimized GPU GEMM implementations
for Intel CPUs using all the available cores. When experi-
ments are run on the GPU the cuBLAS library is used [33],
which is the library that contains optimized GPU GEMM
implementations for NVIDIA GPUs. All the implementa-
tions are compiled for x64 and the data type used to store the
coordinates of data points is double-precision floating-point.
All experiments are run under Linux 5.4.0.

Table 1 shows the time elapsed in the filtering of a single
profile for the double FIFO and double circular filters on the
CPU and GPU. The results show the execution time in �s for
different values of K (kernel length) and P (profile length).
There are two clear trends in these results: the double FIFO
filter provides better results and the GPU provides better
results only for large profiles or kernels. The double FIFO
filter provides better results than the double circular filter in

all cases, both when running on the CPU and the GPU. The
double FIFO filter requires copying a block of memory once
every K profiles. This approach results in better execution
times than storing the profile twice each time, as the double
circular filter does.

Results indicate that the GPU only provides an advan-
tage for large profiles or kernels. One of the main reason
is the penalty imposed by data transfer from main memory
to the GPU. As large data blocks are transferred and fil-
tered this penalty is reduced. Only then, the GPU presents
an advantage compared with the processing of the CPU.
Moreover, GPUs implement efficient matrix operations by
partitioning the matrix into tiles. In general, larger tiles use
less bandwidth and result in more efficient data processing
than smaller tiles. However, using larger tiles can generate
fewer tiles to run in parallel, which can potentially lead to
under-utilization of the GPU. The larger the matrix the GPU
is operating on the less important this tradeoff is. When the

Table 1   Comparison of double circular and double FIFO filters run-
ning on the CPU and GPU. Al values are given in �s

K P CPU GPU

Circular FIFO Circular FIFO

101 500 15.4 11.2 30.7 21.3
101 1000 17.6 12.9 29.9 21.3
101 2000 20.7 16.0 31.1 21.8
101 4000 26.9 21.7 33.1 23.3
101 8000 41.8 36.3 37.5 28.6
101 16,000 178.8 192.8 66.3 56.7
101 32,000 660.5 656.4 100.1 89.9
201 500 18.9 13.3 29.8 20.4
201 1000 22.4 18.1 31.6 21.7
201 2000 29.1 22.7 31.3 21.6
201 4000 40.1 34.2 36.5 27.0
201 8000 153.9 158.2 52.7 43.0
201 16,000 610.9 586.4 90.4 80.3
201 32,000 1537.5 1517.1 145.8 136.2
301 500 20.8 17.4 30.8 20.8
301 1000 27.1 21.3 31.8 22.0
301 2000 36.2 30.0 32.7 22.6
301 4000 67.9 58.6 43.1 33.3
301 8000 351.4 347.6 62.7 53.2
301 16,000 1056.2 1082.6 111.8 102.1
301 32,000 2396.0 2393.8 188.8 178.7
401 500 23.5 18.8 31.0 21.0
401 1000 30.7 25.2 30.8 20.9
401 2000 42.9 37.3 35.7 26.1
401 4000 155.0 150.9 48.7 39.5
401 8000 591.7 585.3 74.5 65.3
401 16,000 1494.0 1480.4 136.9 127.3
401 32,000 3272.7 3259.8 234.9 224.7

524	 Journal of Real-Time Image Processing (2022) 19:517–527

1 3

matrix is small tile efficiency or tile parallelism prevents the
GPU from running at peak utilization. This issue can be seen
in Fig. 5, which shows the double FIFO filter performance
when considering the total number of points ( K × P ). As
can be seen, the GPU provides much better results than the
CPU, but only if there is enough data to take advantage of
the massive parallel execution capability of the GPU.

Comparing the results with previous works, for example
in [31], the proposed procedure is around 4 times faster on
similar hardware. These results confirm that the proposed
approach to transform filtering into GEMM operations pro-
vides better results than directly designing ad hoc procedures
based on SIMD and multicore parallelism.

The results presented in Table 1 indicate that for a ker-
nel length of 101, a commonly used length, the GPU only
presents an advantage when the profile has more than 8000
points. However, in most real scenarios profiles do not con-
tain this large number of points. The most common profile
length is around 2000 points. In this scenario, with K = 101
and P = 2000 , the CPU is the preferred running platform
considering the results of the experiments. The batch filter-
ing approach is the proposed method in this work to improve
GPU efficiency for this frequent scenario.

4.2 � Analysis of the GPU performance
and bottlenecks

To determine the best approach to performing batch filtering,
several tests are carried out to quantify the performance of a
GPU in terms of data transfer and computation capabilities.
In addition, the penalty imposed by data transfer from main
memory to the GPU is analyzed.

The first test analyzes data transfer speed from main
memory to the GPU. Because the GPU is plugged into the
PCI express bus, this largely depends on how fast the PCI
express bus is and the number of lanes assigned. Other pro-
grams using the bus may also affect the results. The results

are presented in Fig. 6. In this experiment, data is allocated
in main memory and then it is sent to the GPU. Data is then
transferred back to the host main memory. The GPU used in
the experiment uses 16-lane slots (PCIe3 x16), which could
give a theoretical 15.75 GB/s. However, the results provide
worse results. Peak send speed of 11.36 GB/s is achieved
when transferring memory blocks of 16 MiB. Peak gather
speed of 10.11 GB/s is achieved also at 16 MiB. This test
indicates that the most efficient approach is to transfer data
in blocks of large sizes.

The next test evaluates the read and write speed in main
memory compared with the same operations on the GPU.
The results are presented in Fig. 7. The GPU can transfer
memory much faster than the main memory. Moreover, the
GPU can transfer memory much faster than it can get data
from main memory. The peak GPU read and write speed is
691.09 GB/s at 2 MiB, i.e., it is around 70 times faster than
data transfer from main memory to the GPU. The peak read
and write speed in main memory is limited to 7.01 GB/s also
at 2 MiB. This indicates that data transfer inside the GPU is

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Number of points ×107

0

1000

2000

3000

P
ro

fi
le

fi
lt
er

ti
m
e
(µ

s)

CPU
GPU

Fig. 5   CPU and GPU performance for profile filtering when consid-
ering the number of points

1
K
iB

2
K
iB

4
K
iB

8
K
iB

16
K
iB

32
K
iB

64
K
iB

12
8
K
iB

25
6
K
iB

51
2
K
iB

1
M

iB
2
M

iB
4
M

iB
8
M

iB
16

M
iB

32
M

iB
64

M
iB

12
8
M

iB
25

6
M

iB
51

2
M

iB
1
G
iB

Array size (bytes)

0

2

4

6

8

10

T
ra

n
sf
er

sp
ee

d
(G

B
/s

)
CPU to GPU
GPU to CPU

Fig. 6   Data transfer speed from main memory to the GPU and vice-
versa

1
K
iB

2
K
iB

4
K
iB

8
K
iB

16
K
iB

32
K
iB

64
K
iB

12
8
K
iB

25
6
K
iB

51
2
K
iB

1
M

iB
2
M

iB
4
M

iB
8
M

iB
16

M
iB

32
M

iB
64

M
iB

12
8
M

iB
25

6
M

iB
51

2
M

iB
1
G
iB

Array size (bytes)

0

200

400

600

T
ra

n
sf
er

sp
ee

d
(G

B
/s

)

GPU to GPU
CPU to CPU

Fig. 7   Data transfer in the GPU and main memory

525Journal of Real-Time Image Processing (2022) 19:517–527	

1 3

not a bottleneck, but the transfer from main memory. There-
fore, to make filtering more efficient it is crucial to minimize
the number of memory transfers from main memory to the
GPU. Data transfer inside the GPU is not that relevant for
efficient operations. This is the reason why the double FIFO
filter is more efficient, as it is based on periodical data trans-
fers of large blocks of memory inside the GPU.

The computational performance of the CPU and GPU
is evaluated in Fig. 5. An additional test is performed to
quantify the computational performance of a single matrix-
matrix multiplication. For a matrix of NxN the total num-
ber of floating-point operations (GFLOPS) is calculated
as 2N3 − N2 . The results can be seen in Fig. 8. The test
achieved peak calculation rates of 921.2 GFLOPS for the
CPU and 13207.1 GFLOPS for the GPU.

These results indicate that memory transfers from host
memory to GPU memory is slow compared with data trans-
fers inside the GPU memory. Thus, to improve the efficiently
of the filtering process the number of transfers from the host
memory to the GPU should be minimized, and they always
need to be performed in large blocks. Also, when large data
blocks are processed, GPUs are much faster than CPUs.

4.3 � The double FIFO batch filter

Table 2 shows the results of the experiments for small pro-
files (1000 and 2000 points per profile). The results show
the execution time per profile in the CPU and GPU in �s for
different values of B (batch size) and K = 101 . The benefit
of using batches is clearly appreciable in the results, both in
the CPU and the GPU. Also, when using a batch size of 75
profiles, the GPU is faster than the CPU even for this small
profiles of 1000 points. For slightly larger profiles with 2000
points, a batch size of 8 profiles results in faster execution
times in the GPU than in the CPU.

The comparison of the results in Table 2 with the results
obtained previously in Table 1 shows that the execution in
the CPU is worse when the batch size is small, but better

when the batch size is increased, as it is more efficient to
transfer large blocks of memory to the storage matrix. More-
over, for a medium batch size the penalty imposed by data
transfer from main memory to the GPU is negligible. Thus,
this batch filtering approach can be applied in the GPU for
any profile size. This approach offloads the filtering task
from the host CPU resulting in optimal system and applica-
tion response, as the CPU can run other tasks while the GPU
is performing data filtering.

4.4 � Real‑time filtering for steel products

Surface metrology is applied in many different fields. Steel
product manufacturing is among such fields where the sur-
face finishing quality of the products is of crucial impor-
tance. Therefore, it is analyzed in real-time to assess the
manufactured products.

Figure 9 shows the results of the proposed filtering
approach applied to steel strips. The raw surfaces repre-
sent sections of steel strips 2 ms wide, 5 ms long and with
height variations around 5 mm. The filtering results show
the removal of the roughness and the waviness from the
measured surfaces. This type of filters are very common
in these products to analyze different features, such as flat-
ness [34]. These filters are implemented using kernels cal-
culated considering different cutoff wavelengths that dis-
tinguish relevant from non-relevant information. As can be
seen, the filters efficiently remove the non-relevant infor-
mation, generating the filtered surface in real-time with the
manufacturing process. Acquiring the relevant information
in real-time enables the extraction of features that indicate
possible deviations of the surface from its intended shape,
making quickly correcting actions possible and, thus, not

104 105 106 107 108

Matrix size (numel)

0

2500

5000

7500

10000

12500

C
al
cu

la
ti
on

R
at

e
(G

F
L
O
P
S
)

CPU
GPU

Fig. 8   Computational performance in single matrix–matrix multipli-
cation in the CPU and GPU

Table 2   Results of batch
filtering for K = 101 and
different values of profile length
(P) and batch size (B). Al values
are given in �s

P B CPU GPU

1000 1 17.8 25.4
1000 2 13.7 18.4
1000 4 13.9 14.4
1000 8 10.8 12.2
1000 25 10.9 10.8
1000 75 10.4 10.3
1000 150 10.2 10.2
1000 200 10.3 10.1
2000 1 20.8 26.2
2000 2 20.1 19.0
2000 4 14.0 15.0
2000 8 14.7 13.5
2000 25 13.1 11.9
2000 75 12.5 11.5
2000 150 12.6 11.3
2000 200 12.4 11.2

526	 Journal of Real-Time Image Processing (2022) 19:517–527

1 3

only improving the final quality but also the productivity of
the manufacturing line.

In steel strip manufacturing, the most commonly used
technique for surface metrology is laser triangulation based
on line projectors. Profiles have from 1000 to 4000 points
acquired at 1 to 4 kHz. The proposed filtering approach sur-
plus these requirements. Thus, the integration of the filtering
task in this industrial application is straightforward, even
making it possible to run data filtering in low-end computers.

5 � Conclusions

Real-time operations can be run on the GPU, providing
superior performance and energy efficiency acceleration.
However, in previous works the advantages are generally
compensated by the penalty imposed by data transfer from
main memory when processing small volumes of data. This
work analyzes the performance of the CPU and the GPU
for filtering operations required in surface metrology. The
proposed approach is to transform filtering techniques into
general matrix to matrix multiplications and, thus, take
advantage of the extremely efficient code developed in this
field pushed by recent advances in deep learning models.

Results indicate the proposed methods provide superior
performance than previous works when running on the CPU.
When filtering is applied on the GPU, the proposed methods

provide major advantages for large profiles or kernels in
terms of processing speed. However, small volumes of data
are processed faster on the CPU, due to the penalty imposed
by data transfer from main memory to the GPU. The solu-
tion proposed for this scenario, based on the analysis of the
performance of the GPU, is batch filtering. Multiple profiles
are transferred to the GPU in a single block of memory. Fol-
lowing this approach, filtering can be applied in the GPU
for any profile size with better performance than the CPU.
Therefore, the proposed batch filtering approach on the GPU
not only provides an extremely efficient filtering method but
also frees the CPU for other tasks. This represents a major
advantage for a responsive real-time application. Further-
more, the proposed real-time approach is crucial for effective
industrial applications, where engineering workpieces are
characterized during the production process, which ensures
they meet the required the specifications, minimizing down-
time and maximizing efficiency.

Funding  Open Access funding provided thanks to the CRUE-CSIC
agreement with Springer Nature.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are

Fig. 9   Filtering results for steel strips. a, d Raw data. b, e Filtering results after removing roughness. c, d Filtering results after removing wavi-
ness

527Journal of Real-Time Image Processing (2022) 19:517–527	

1 3

included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Gao, W., Haitjema, H., Fang, F., Leach, R., Cheung, C., Savio, E.,
Linares, J.-M.: On-machine and in-process surface metrology for
precision manufacturing. CIRP Ann. 68(2), 843–866 (2019)

	 2.	 Yi, B., Qiao, F., Huang, N., Wang, X., Wu, S., Biermann, D.:
Adaptive sampling point planning for free-form surface inspection
under multi-geometric constraints. Precis. Eng. 72, 95–101 (2021)

	 3.	 Mathia, T., Pawlus, P., Wieczorowski, M.: Recent trends in surface
metrology. Wear 271(3–4), 494–508 (2011)

	 4.	 Conroy, M., Armstrong, J.: A comparison of surface metrology
techniques. In: Journal of Physics: Conference Series, vol. 13,
no. 1. IOP Publishing, p. 458 (2005)

	 5.	 Marrugo, A.G., Gao, F., Zhang, S.: State-of-the-art active opti-
cal techniques for three-dimensional surface metrology: a review.
JOSA A 37(9), B60–B77 (2020)

	 6.	 Townsend, A., Senin, N., Blunt, L., Leach, R., Taylor, J.: Surface
texture metrology for metal additive manufacturing: a review. Pre-
cis. Eng. 46, 34–47 (2016)

	 7.	 Wang, Y., Xie, F., Ma, S., Dong, L.: Review of surface profile
measurement techniques based on optical interferometry. Opt.
Lasers Eng. 93, 164–170 (2017)

	 8.	 Corti, A., Giancola, S., Mainetti, G., Sala, R.: A metrological
characterization of the kinect v2 time-of-flight camera. Robot.
Auton. Syst. 75, 584–594 (2016)

	 9.	 Beraldin, J.-A., Carrier, B., MacKinnon, D., Cournoyer, L.: Char-
acterization of triangulation-based 3d imaging systems using cer-
tified artifacts. NCSLI Measure 7(4), 50–60 (2012)

	10.	 Usamentiaga, R., Molleda, J., García, D.F.: Fast and robust laser
stripe extraction for 3d reconstruction in industrial environments.
Mach. Vis. Appl. 23(1), 179–196 (2012)

	11.	 Muralikrishnan, B., Raja, J.: Computational Surface and Round-
ness Metrology. Springer, New York (2008)

	12.	 Blunt, L., Jiang, X.: Advanced Techniques for Assessment Sur-
face Topography: Development of a Basis for 3D Surface Texture
Standards Surfstand. Elsevier, Amsterdam (2003)

	13.	 Li, J., Peng, Y., Jiang, T.: Embedded real-time infrared and visible
image fusion for uav surveillance. Journal of Real-Time Image
Processing, pp. 1–15 (2021)

	14.	 Georgis, G., Lentaris, G., Reisis, D.: Acceleration techniques and
evaluation on multi-core cpu, gpu and fpga for image processing
and super-resolution. J. Real-Time Image Proc. 16(4), 1207–1234
(2019)

	15.	 Smith, S.W.: The Scientist and Engineer’s Guide to Digital Signal
Processing. California Technical Pub, San Diego (1997)

	16.	 He, B., Zheng, H., Ding, S., Yang, R., Shi, Z.: A review of digital
filtering in evaluation of surface roughness. Metrology and Meas-
urement Systems, vol. 28, no. 2 (2021)

	17.	 Lou, S., Jiang, X., Scott, P.J.: Correlating motif analysis and mor-
phological filters for surface texture analysis. Measurement 46(2),
993–1001 (2013)

	18.	 Young, I.T., Van Vliet, L.J.: Recursive implementation of the
gaussian filter. Signal Process. 44(2), 139–151 (1995)

	19.	 Brinkmann, S.: Accessing roughness in three-dimensions using
gaussian regression filter. Int. J. Mach. Tools Manuf. 41, 2153–
2161 (2001)

	20.	 Krystek, M.: Discrete l-spline filtering in roundness measure-
ments. Measurement 18(2), 129–138 (1996)

	21.	 Fu, S., Muralikrishnan, B., Raja, J.: Engineering surface analysis
with different wavelet bases. J. Manuf. Sci. Eng. 125(4), 844–852
(2003)

	22.	 International Organization for Standardization: ISO 25178–2:2012
Geometrical Product Specifications. ISO, Standard (2009)

	23.	 American Society of Mechanical Engineers: B46.1-2009 Surface
Texture (Surface Roughness, Waviness, and Lay). ASME, Stand-
ard (2009)

	24.	 International Organization for Standardization: ISO 16610: Geo-
metrical product specifications (GPS) - Filtration. ISO, Standard
(2002)

	25.	 Dong, W., Mainsah, E., Stoutt, K.: Determination of appropri-
ate sampling conditions for three-dimensional microtopography
measurement. Int. J. Mach. Tools Manuf. 36(12), 1347–1362
(1996)

	26.	 Su, Y., Xu, Z., Jiang, X.: Gpgpu-based gaussian filtering for sur-
face metrological data processing. In: 12th International Confer-
ence Information Visualisation. IEEE 2008, 94–99 (2008)

	27.	 Lee, C.W., Ko, J., Choe, T.-Y.: Two-way partitioning of a recur-
sive gaussian filter in cuda. EURASIP J. Image Video Process.
2014(1), 1–12 (2014)

	28.	 Zhang, C., Xu, Y., He, J., Lu, J., Lu, L., Xu, Z.: Multi-gpus gauss-
ian filtering for real-time big data processing. In: 2016 10th Inter-
national Conference on Software, Knowledge, Information Man-
agement & Applications (SKIMA). IEEE, pp. 231–236 (2016)

	29.	 Lustig, D., Martonosi, M.: Reducing gpu offload latency via
fine-grained cpu-gpu synchronization. In: IEEE 19th Interna-
tional Symposium on High Performance Computer Architecture
(HPCA). IEEE 2013, 354–365 (2013)

	30.	 Nehab, D., Maximo, A., Lima, R.S., Hoppe, H.: Gpu-efficient
recursive filtering and summed-area tables. ACM Trans. Graph.
(TOG) 30(6), 1–12 (2011)

	31.	 Usamentiaga, R.: Real-time filtering on parallel simd architectures
for automated quality inspection. J. Real-Time Image Proc. 18(1),
127–141 (2021)

	32.	 Wang, E., Zhang, Q., Shen, B., Zhang, G., Lu, X., Wu, Q., Wang,
Y.: Intel math kernel library. In: High-Performance Computing on
the Intel® Xeon PhiTM . Springer, pp. 167–188 (2014)

	33.	 Markidis, S., Der Chien, S.W., Laure, E., Peng, I.B., Vetter, J.S.:
Nvidia tensor core programmability, performance & precision.
In: IEEE International Parallel and Distributed Processing Sym-
posium Workshops (IPDPSW). IEEE 2018, 522–531 (2018)

	34.	 Usamentiaga, R., Molleda, J., Garcia, D.F., Bulnes, F.G., Entri-
algo, J., Alvarez, C.M.S.: Flatness measurement using two laser
stripes to remove the effects of vibrations. IEEE Trans. Ind. Appl.
51(5), 4297–4304 (2015)

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/

	CPU and GPU real-time filtering methods for dense surface metrology using general matrix to matrix multiplications
	Abstract
	1 Introduction
	2 Filtering in surface metrology
	3 Real-time filtering approach
	3.1 Efficient matrix operations
	3.2 The double FIFO filter and the double circular filter
	3.3 The double FIFO batch filter

	4 Results and discussion
	4.1 The double FIFO filter and the double circular filter
	4.2 Analysis of the GPU performance and bottlenecks
	4.3 The double FIFO batch filter
	4.4 Real-time filtering for steel products

	5 Conclusions
	References

