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Abstract
Filtering is a required task in surface metrology for the identification of the components relevant for automated quality con-
trol. The calculation of real-time features about the surface is crucial to determining the mechanical and physical properties 
of the inspected product. The computation efficiency of the filtering operations is a major challenge in surface metrology, 
as current sensors provide massive volumes of data at very high acquisition rates. To overcome the challenges, this work 
presents different real-time filtering solutions comparing the performance on the CPU and on the GPU, using modern hard-
ware. The proposed framework is focused on filtering techniques that can be expressed using a finite impulse response (FIR) 
kernel that includes the Gaussian kernel, the most common filtering technique recommended by ISO and ASME standards. 
This research work proposes variations of the double FIFO and double circular filters. The filters are transformed into a 
series of general matrix to matrix multiplications, which can be run extremely efficiently on different architectures. The 
proposed filtering approach provides superior performance compared with previous works. Additionally, tests are carried 
out to quantify the performance of the GPU in terms of data transfer and computation capabilities in order to diminish the 
penalty imposed by data transfer from main memory to the GPU in real-time operations. Based on the results, an efficient 
batch filtering technique is proposed that can be run on the GPU faster than the CPU even for small profile and kernel sizes, 
offloading this task from the host CPU for optimal system and application response.
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1  Introduction

Surface metrology is a field of utmost importance in prod-
uct manufacturing that deals with the characterization of 
surface topography [1]. The resulting topography provides 
information about regular and irregular patterns, roughness, 
waviness and dimensions of the inspected product, providing 
the deviations of the surface from its intended shape. These 
features are crucial to determining the mechanical and physi-
cal properties of the product, including friction or electrical 
conductivity, but also the overall finishing quality according 
to relevant standards. For example high friction can lead to 
faster wear and shorter lifetimes and uneven flatness results 
in heterogeneous rolled-product plastic deformations. Thus, 

the evaluation of quality control features ensures compliance 
with quality criteria, preventing failures and guaranteeing 
the serviceability.

Despite a great development of measurement techniques, 
surface metrology still presents a significant challenge [2]. 
Most measurement techniques are based on mechanical sty-
lus profilers or noncontact optical instruments [3]. Stylus 
based methods are still the most common for surface topog-
raphy. However, they are time-consuming, which is a signifi-
cant limitation. Also, they require periodic maintenance, as 
they are affected by wear [4].

Noncontact optical instruments determine the surface 
topography of the inspected object through the intensity 
registered in a sensor [5]. There is a large number of meth-
ods for optical surface metrology, but in general they can be 
classified into two major categories, depending on whether 
they require triangulation or not. Methods that do not require 
triangulation are based on the physical nature of light, for 
example about how the light travels in time or space [6]. 
Interferometry is the most accurate measurement technology 
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in this group [7]. However, it has a limited field of view and 
range. Thus, this type of sensors is mostly used for micro-
scale surface metrology. Time-of-Flight (ToF) based surface 
metrology greatly extends the field of view and range, but at 
the cost of significantly reduced accuracy [8].

Interferometry-based techniques are the best choice 
for extremely-high-accuracy in low range measurements, 
and ToF-based techniques are good for low-accuracy and 
large object sizes. The triangulation-based methods land in 
between in terms of accuracy and range [9]. Therefore, they 
are the preferred choice in many industrial applications [10].

There are many different configurations for triangula-
tion-based methods, but in the most basic form they use 
one or more cameras and one emitter of structured light. 
The most common approach for automated surface inspec-
tion in industrial applications is a configuration based on 
a single camera and laser line projector. This method can 
achieve high measurement accuracy in one direction. Moreo-
ver, in manufacturing production lines the products to be 
inspected move forward along a roll path or on a conveyor 
belt. This relative movement between the product and the 
sensor allows the measurement of the whole surface meas-
urement without swiping the laser line, producing a dense 
set of points (i.e., point cloud) that accurately represents the 
surface topography.

The assessment of surface topography requires removing 
unwanted elements from the measured surface geometry. 
A common approach is to define a reference line or plane 
about which deviations are measured. In general, the surface 
is assumed to be comprised of different wavelengths. The 
assessment requires the identification of the components 
relevant for the required analysis, which is achieved using 
a filtering operation. The filtering procedure performs the 
separation of the surface topography into components with 
different frequencies. The most common components are 
referred to as noise, roughness, waviness and form [11]. Fil-
tering is a critical process for surface metrology to ensure 
the accuracy of the assessment of surface topography.

A large variety of filtering techniques are used in sur-
face metrology. In all cases, the goal is to remove unwanted 
components from the analyzed surface. Depending on the 
particular application, this could require the elimination 
of the roughness from the waviness or viceversa. The most 
basic approach used to be implemented in hardware using a 
resistor–capacitor (RC) network. However, nowadays analog 
filtering has been replaced by digital filtering.

The computation efficiency of the digital filtering 
operations is a major challenge in surface metrology. 
Current sensors provide massive volumes of data at very 
high acquisition rates. For example, recent profilometers 
can measure profiles at an acquisition rate up to 10 kHz, 
with each profile containing thousands of measurement 
points. This type of sensors enable the extraction of dense 

topographic information from products in manufacturing 
lines that are moving very quickly, also without affecting 
the productivity. However, the high production speed and 
the massive volume of data generated requires extremely 
efficient filtering techniques, particularly if filtering is 
required to be applied in real-time with the manufactur-
ing process. These extremely demanding real-time require-
ments are commonly found in automated quality control, 
where deviations from tolerance specifications of geomet-
rical features need to be detected very quickly. Based on 
this approach, engineering workpieces are characterized 
online, which ensures they can performs its designed func-
tions and the manufacturing process is operating accord-
ing to the specifications. This minimizes downtime, and 
maximizes efficiency and overall product quality.

To overcome the challenges related to the filtering 
of high volumes of dense topographic data in real-time, 
this paper presents different real-time filtering alterna-
tives comparing the performance on the CPU and on the 
GPU, using modern hardware. The proposed framework is 
focused on filtering techniques that can be expressed using 
a finite impulse response (FIR) kernel. This includes the 
Gaussian filter, which is the most commonly used filter 
in surface topography, recommended by ISO 16610 and 
ASME B46 standards for establishing a reference surface 
[12]. Other filters commonly used in signal processing, 
such as the windowed-sinc, can also be expressed using a 
FIR kernel. Moreover, these kernels can be easily trans-
formed to meet specific requirements: low-pass, high-pass, 
band-pass or band-reject. The proposed approach can be 
used with any of these kernels, making it versatile, flex-
ible, and suitable for a wide variety of applications. This 
research work analyzes the most commonly used platforms 
with different acceleration strategies: multicore CPUs and 
GPUs [13]. This work presents filtering techniques based 
on the most efficient methods previously described in the 
literature for real-time filters: the double FIFO filter and 
the double circular filter. The proposed filtering methods 
are transformed into a series of general matrix to matrix 
multiplications. This way, the proposed filtering approach 
takes advantage of the extremely efficient code developed 
in this field pushed by recent advances in deep learning 
models, where general matrix to matrix multiplications are 
the fundamental building block.

Hardware accelerators such as GPUs tend to be superior 
to multicore CPUs both in run-time performance and energy 
efficiency [14], but the advantages can be compensated by 
the penalty imposed by data transfer. This work also ana-
lyzes GPU performance and bottlenecks. Based on this anal-
ysis, an efficient batch filtering technique is also proposed 
that diminishes this penalty. This provides the opportunity 
for data filtering on the GPU in real-time even for small 
profiles, offloading the CPU from this task.
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The remainder of this paper is organized as follows. Sec-
tion 2 reviews filtering for surface texture analysis; Sect. 3 
presents the proposed approach for efficient filtering in real-
time and the batch filtering technique to overcome the pen-
alty imposed by data transfers in real-time operations; Sect. 4 
discusses the results obtained, including tests with real data; 
Sect. 5 reports conclusions.

2 � Filtering in surface metrology

Surface metrology analyzes the form, waviness or roughness 
on the surface of a manufactured product. Filtering is used 
to distinguish relevant from irrelevant information. The most 
common method is based on the Gaussian filter. This particu-
lar type of filter is classified as a Finite Impulse Response 
(FIR) filter in digital signal processing [15]. This filter is usu-
ally implemented by convolving the input signal with the filter 
kernel, which is equivalent to a multiplication in the frequency 
domain. This later approach is only appropriate when the ker-
nel is very large.

Different filtering techniques have been standardized in 
surface metrology [16]. The most common digital filtering 
techniques are the envelope filter [17], the Gaussian filter [18], 
the Gaussian regression filter [19], the spline filter [20] and the 
wavelet filter [21]. International standards describe these fil-
ters, their parameters and provide guidance on the use, includ-
ing ISO 25178 [22], ASME B46.1 [23] and ISO 16610 [24].

In general, a signal x is created by sampling physical phe-
nomena at regular intervals of time. In surface metrology, a 
signal is created by recording the topographic information 
at equal intervals in the plane of the surface, i.e., signals are 
sampled in the spatial domain. The sampling interval is impor-
tant, as a value too small can lead to a large number of highly 
correlated data points while a value too large can result in 
highly uncorrelated data, losing crucial spatial information. 
Different methods to establish optimal sampling intervals have 
been proposed in the literature [25]. In surface metrology, the 
wavelength ( � ) is expressed in length units (meters), and the 
spatial frequency ( � = 1∕� ) is expressed in cycles per meter. 
Different techniques can be used to create regular spatial 
sampling, such as encoders that detect the motion and trigger 
acquisition signals

The kernel used in the Gaussian filter, standardized in ISO 
16610 part 21, follows a Gaussian function, as can be seen in 
(1), where i is the position from the origin of the kernel, and 
� =

√

ln 2∕� = 0.4697 is a constant designed to provide 50% 
transmission at a cutoff wavelength �c.

An alternative approach is the idealized filter windowed-
sinc, which is calculated by taking the Inverse Fourier 

(1)h(i) =
1

��c
e
−�(

i

��c
)2

Transform of the ideal frequency response. The kernel is 
given by (2), where fc is the normalized cutoff frequency. 
This function presents abrupt discontinuities at the ends, 
which create ripples in the passband and poor attenuation 
in the stopband. The solution is to multiply the kernel by a 
smoothing window, for example the Hamming or Blackman 
windows.

The kernel shape of the Gaussian filter and the Windowed-
sinc smoothed with the Blackman are similar for small 
lengths, but tend to differ when the window length is larger.

These kernels represent low-pass filters, but they can be 
easily transformed into high-pass, band-pass or band-reject 
kernels, making them very flexible and versatile. For exam-
ple, a high-pass filter kernel, hhp , can be calculated from a 
low-pass filter kernel, hlp , using (3), where N is the length of 
the kernel. Combining these filters, the separation of signals 
into relevant components is straightforward. The separation 
is based on the definition of different wavelengths cutoffs: 
�s to separate shorter wavelengths considered noise from 
roughness, �c to separate roughness from waviness, and �f  
to separate waviness and longer wavelengths describing the 
primary form.

Given a particular kernel h, a FIR filter of order N can be 
implemented using the convolution sum described in (4), 
where x[n] is the input signal and y[n] is the filtered signal

When working offline, the execution speed of the filter-
ing operation is not very relevant. However, in automated 
quality control, real-time filtering is required to measure 
product features during manufacturing. Different works 
have evaluated the performance of Gaussian filters on the 
GPU. A filtering approach using the GPU is presented in 
[26]. The proposed approach has a speedup factor up to 4.8. 
However, it is compared with an unoptimized Matlab imple-
mentation. In [27] another alternative approach is presented. 
Results indicate the CPU-based implementation has better 
performance on small images, but the situation is reversed 
when large images are used. The research only evaluates 
the performance with images, and it is not designed to work 
in real-time. In [28], a filtering procedure is proposed with 
multiple GPUs. The performance is compared with Matlab 
on the CPU, but it does not propose a real-time comparison. 
Results, again, indicate kernel launches in GPU present a 

(2)h(i) =
sin (2�fci)

i�

(3)hhp(i) =

{

1 − hlp(i) if i = N∕2

−hlp(i) else

(4)y[n] =

N
∑

i=0

h[i] ⋅ x[n − i]
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huge performance penalty for small images. In general, only 
with large data sets the penalty for data transfer is com-
pensated. For small surface maps ( 512 × 512 ), even imple-
mentations based on two GPU based are slower than CPU 
implementations due the required data transmissions and 
kernel launches in GPU [29]. The CPU optimizations in all 
these works are not clear. A different approach is presented 
in [30], where the image is partitioned into blocks that are 
processed in parallel by modern GPU architectures. This is 
applicable to the parallel execution of 1D recursive filters. 
This approach can be applied to offline Gaussian filtering, 
reducing memory bandwidth over a sequence of recursive 
filters.

An optimized implementation for FIR filters on multi-
core CPUs is presented in [31]. This work proposes different 
strategies to filter height maps in real-time. Optimizations 
are based on efficient strategies to store previous samples in 
memory, CPU parallelism, SIMD instructions and cache-
line friendly data structures. Results indicate the double 
FIFO (first in first out) is optimal data structure to store data 
in memory, achieving 40.58 � s per profile, 5000 times faster 
than the conventional spline filter. The proposed approach is 
not compared with GPU-based implementations.

3 � Real‑time filtering approach

The proposed filtering approach in this work is to design a 
procedure based on the most efficient methods previously 
described in the literature for real-time filters: the double 
FIFO filter and the double circular filter. However, rather 
than designing specific optimizations to run these methods 
on particular CPU or GPU architectures, in this work the 
methods are transformed into a series of general matrix to 
matrix multiplications (GEMM). In previous works, the 
implementation of the filtering techniques was optimized for 
particular CPU and GPU architectures based on specific par-
allel execution models. For example, in [31] the optimization 
is based on parallels execution on multicore CPUs taking 
advantage of SIMD instructions (single instruction, multiple 
data). In [28] specific CUDA kernels are implemented to run 
the filtering process on multiple GPUs. This work proposes 
a different approach much more flexible and versatile: every 
filter operation is transformed into a matrix multiplication. 
Then, highly efficient implementations of these operations 
are used to make the proposed filtering approach provide 
superior performance than previous works.

3.1 � Efficient matrix operations

Matrix multiplication is a fundamental mathematical opera-
tions used in many fields. Thus, very efficient libraries have 
been implemented to run these operations. The defacto 

standard in high-performance computing is BLAS (Basic 
Linear Algebra Subprograms), which is a specification that 
describes a set of low-level routines and operations for per-
forming common linear algebra operations, such as vector, 
matrix–vector, and matrix–matrix operations. Many vendors 
provide optimized BLAS implementations for their hard-
ware. Two of the most commonly used implementations are 
the Intel MKL (Math Kernel Library), supporting Intel x86 
32-bits and 64-bits CPUs, and cuBLAS for CUDA Nvidia 
GPUs. These two implementations provide highly efficient 
and finely tuned BLAS implementations for their processors. 
Many other implementations exists, such as rocBLAS for 
AMD GPUs using ROCm, or OpenBLAS for different CPU 
architectures including x86-64, RISCV, ARM64, MIPS or 
Sparc.

3.2 � The double FIFO filter and the double circular 
filter

The double FIFO filter and the double circular filter are two 
possible alternatives to implement real-time FIR filters. 
Thus, they can be used to implement a real-time Gauss-
ian filter for surface metrology. Considering an optical 
surface metrology method based on triangulation, where a 
single line projector is used and there is a relative move-
ment between the sensor and the inspected object, a single 
height profile is acquired at a time. This profile contains a 
variable number of points that describe the height across the 
object. The point x[i, j] represents the height of the profile i 
at the position j. The proposed real-time filter is applied to 
all sequences of point positions from j = 0 to P − 1 , where 
P is the number of points per profile. The filtering operation 
is applied for each acquired height profile considering previ-
ous samples, producing a filtered profile with a delay that 
depends on the length of the kernel.

The double FIFO filter is a variation of the FIFO filter. 
The difference is that while the FIFO filter requires shifting 
the buffer every time a new profile is acquired, the dou-
ble FIFO stores the sequence of profiles and only performs 
large block memory transfers periodically. This provides the 
opportunity for large data transfers rather than transferring 
single profiles. This way, memory access is more efficient 
and the execution time is reduced.

The procedure is illustrated in Fig. 1, considering profiles 
with 4 points, P = 4 from 0 to 3, and a filter kernel of size 5, 
K = 5 from 0 to 4. The number of rows in the storage matrix 
that contains the sequence of profiles is almost twice the size 
of the kernel: K ∗ 2 − 1 (row 0 is a the top of the matrix); 
and the number of columns is equal to the number of points 
per profile. A profile is stored in one matrix row. The first 
profile is stored at row K − 1 . Next profiles are stored by 
decreasing the insertion row, as can be seen in Fig. 1b and c 
up until the profile is stored at the first row of the matrix. The 
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next profile wraps around the insert position to row K − 1 . 
Also, the submatrix of profiles above the current position is 
copied to the submatrix below the current position, as can 
be seen in Fig. 1d. The profiles from the current position to 
that position plus K − 1 contain the block of profiles to be 
filtered (the most recent profiles). After the matrix is filled, 
a steady state is reached where the most recent profiles are 
always stored in a contiguous block of memory starting from 
the last insert position. Further details are given in [31].

The double circular filter is based on the circular filter. 
Similar to the double FIFO filter, this filter doubles the allo-
cated size to store the previous profiles, maintaining two 
identical memory regions redundantly. This increased stor-
age size is used to improve memory access.

Considering profiles with 4 points, P = 4 from 0 to 3, 
and a filter kernel of size 5, K = 5 from 0 to 4, the double 
circular buffer maintains two identical regions of memory. 
Thus, the storage matrix is 2 × K rows and P columns. Two 
row indexes are used: the top index goes from K − 1 to 0, and 
the bottom index goes from 2 × K − 1 to K. Each acquired 
profile is stored twice, at the positions indicated by each 
index. When one index reaches the beginning of a region, it 
is wrapped around to the end of that region. In this case, no 
memory copy is necessary when one index is restarted. The 
most recent profiles are always stored in a contiguous block 
of memory starting from the top index.

The procedure is illustrated in Fig. 2. The first profile is 
stored at row K − 1 and K × 2 − 1 redundantly. Next profiles 
decrement the position of both indexes, as can be seen in 
Fig. 2b and c. When the positions reach the beginning of 
each region, they are restarted to the initial positions and the 
process continues, as can be seen in Fig. 2d. Following this 
approach, at any moment the most recent profiles are always 

stored in a contiguous block of memory starting from the top 
index. Further details are given in [31].

Both the double FIFO and the double circular filters cre-
ate a contiguous block of memory where the most recent 
profiles are stored. This block is a submatrix with a num-
ber of rows equal to the length of the kernel and the num-
ber of columns equal to the length of the profile ( K × P ). 
The kernel can be multiplied by this submatrix to obtain 
the filtered profile, as can be seen in Fig. 3. The result of 
the matrix multiplication is the delayed filtered profile 
( [1 × K] × [K × P] = [1 × P] ). A FIR filter has a linear phase 
response where the higher the order, the longer the time 
delay too. Thus, the resulting profile has a delay that depends 
on the length of the FIR kernel. When using a kernel of size 
K, the delay is (K − 1)∕2 . Following this approach, memory 
access is very efficient and the filtering procedure is trans-
formed into a matrix multiplication applied in real-time with 
the profile acquisition.

3.3 � The double FIFO batch filter

This work proposes an additional variation of the double 
FIFO filter: the double FIFO batch filter. In this filter, pro-
files are filtered in batches rather than one by one. This gen-
erates and additional delay. Now the delay not only depends 
on the length of the filter but also on the length of the batch.

A batch of profiles is created in main memory consisting 
in a tunable number of profiles. The batch is transferred to 
the GPU only when the batch is full, where it is stored as 
a contiguous block of memory in the storage matrix. Then, 
filtering is applied to all the profiles in the batch. Moreover, 
the size of the storage matrix is increased (only limited by 
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Fig. 1   Filtering using the double FIFO filter for K = 5 . a First profile 
is stored at row K − 1 . b Second profile is stored at position K − 2 . c 
Fifth profile is stored at position 0. d The next profile is stored again 

at position K − 1 and the old data at the end of the buffer is overwrit-
ten with the most recent profiles
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the GPU memory). This way, the number of data transfers is 
reduced while the size of the block transferred is increased.

The procedure is illustrated in Fig. 4 considering profiles 
P = 4 and a filter kernel of K = 5 and a batch of two pro-
files, B = 2 . The batch consisting of two profiles is stored 
in the storage matrix, which contains previous profiles in 
ascending row order. Then the kernel is multiplied by the 

two highlighted matrices, resulting in two filtered profiles. 
As can be seen, the process can vary the batch size with no 
major modifications. The most recent profiles are still stored 
in a contiguous block of memory starting from the insertion 
index. However, in this case the data block transferred from 
main memory to the GPU is increased, improving the overall 
efficiency of the filtering procedure. The batch modification 
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Fig. 2   Filtering using the double circular filter. a First profile is stored 
at row K − 1 and 2 × K − 1 . b Second profile is stored at row K − 2 
and the corresponding row in the bottom region. c Fifth profile is 

stored at the beginning of each region. d The next profile is stored 
again at position K − 1 and 2 × K − 1 , and the old data is overwritten 
with the most recent profiles

Fig. 3   Filtering using matrix 
multiplication: the kernel is 
multiplied by the submatrix 
containing the most recent 
profiles
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is only applied to the double FIFO filter. Nevertheless, a 
similar approach could be used to create a batched version 
for the double circular filter.

4 � Results and discussion

4.1 � The double FIFO filter and the double circular 
filter

The real-time performance of the proposed filters are ana-
lyzed in this section. In all cases, the filters perform the same 
operation, providing the same results. The execution speed 
of each experiment is analyzed.

The most common scenarios found in surface metrol-
ogy using triangulation-based methods are profiles with a 
length from 500 to 8000 points. Extended profile lengths 
are considered to evaluate the performance of the proposed 
approaches with future sensors. The considered kernel 
lengths go from 101 to 401, which could be valid lengths 
for usual low-pass filters of 400 mm when using a sampling 
interval of 10 mm.

Measuring execution time is a difficult but critical aspect 
to analyze the performance of the considered filters. The 
proposed testing procedure first perform a warmup while 
the storage matrix is filled. Then, the filter is run to find the 
minimum number of replicates that need to be run while 
still keeping measurement overhead low (to a small fraction 
of the overall run time). Finally, it runs as many replicates 
of the filter as required providing reliable estimates of the 
measurements. In addition, the testing procedure synchro-
nizes the CPU and CUDA when benchmarking on the GPU.

All the reported experiments are performed on a com-
puter with an Intel Core i7 9700K CPU running with 8 cores 
at 3.6 GHz and 64 GB of RAM. The computer also has a 
GeForce RTX 2080 Ti Turbo GPU with 11 GB of RAM. 
For the experimentation on the CPU the Intel MKL library 
is used [32], with optimized GPU GEMM implementations 
for Intel CPUs using all the available cores. When experi-
ments are run on the GPU the cuBLAS library is used [33], 
which is the library that contains optimized GPU GEMM 
implementations for NVIDIA GPUs. All the implementa-
tions are compiled for x64 and the data type used to store the 
coordinates of data points is double-precision floating-point. 
All experiments are run under Linux 5.4.0.

Table 1 shows the time elapsed in the filtering of a single 
profile for the double FIFO and double circular filters on the 
CPU and GPU. The results show the execution time in �s for 
different values of K (kernel length) and P (profile length). 
There are two clear trends in these results: the double FIFO 
filter provides better results and the GPU provides better 
results only for large profiles or kernels. The double FIFO 
filter provides better results than the double circular filter in 

all cases, both when running on the CPU and the GPU. The 
double FIFO filter requires copying a block of memory once 
every K profiles. This approach results in better execution 
times than storing the profile twice each time, as the double 
circular filter does.

Results indicate that the GPU only provides an advan-
tage for large profiles or kernels. One of the main reason 
is the penalty imposed by data transfer from main memory 
to the GPU. As large data blocks are transferred and fil-
tered this penalty is reduced. Only then, the GPU presents 
an advantage compared with the processing of the CPU. 
Moreover, GPUs implement efficient matrix operations by 
partitioning the matrix into tiles. In general, larger tiles use 
less bandwidth and result in more efficient data processing 
than smaller tiles. However, using larger tiles can generate 
fewer tiles to run in parallel, which can potentially lead to 
under-utilization of the GPU. The larger the matrix the GPU 
is operating on the less important this tradeoff is. When the 

Table 1   Comparison of double circular and double FIFO filters run-
ning on the CPU and GPU. Al values are given in �s

K P CPU GPU

Circular FIFO Circular FIFO

101 500 15.4 11.2 30.7 21.3
101 1000 17.6 12.9 29.9 21.3
101 2000 20.7 16.0 31.1 21.8
101 4000 26.9 21.7 33.1 23.3
101 8000 41.8 36.3 37.5 28.6
101 16,000 178.8 192.8 66.3 56.7
101 32,000 660.5 656.4 100.1 89.9
201 500 18.9 13.3 29.8 20.4
201 1000 22.4 18.1 31.6 21.7
201 2000 29.1 22.7 31.3 21.6
201 4000 40.1 34.2 36.5 27.0
201 8000 153.9 158.2 52.7 43.0
201 16,000 610.9 586.4 90.4 80.3
201 32,000 1537.5 1517.1 145.8 136.2
301 500 20.8 17.4 30.8 20.8
301 1000 27.1 21.3 31.8 22.0
301 2000 36.2 30.0 32.7 22.6
301 4000 67.9 58.6 43.1 33.3
301 8000 351.4 347.6 62.7 53.2
301 16,000 1056.2 1082.6 111.8 102.1
301 32,000 2396.0 2393.8 188.8 178.7
401 500 23.5 18.8 31.0 21.0
401 1000 30.7 25.2 30.8 20.9
401 2000 42.9 37.3 35.7 26.1
401 4000 155.0 150.9 48.7 39.5
401 8000 591.7 585.3 74.5 65.3
401 16,000 1494.0 1480.4 136.9 127.3
401 32,000 3272.7 3259.8 234.9 224.7
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matrix is small tile efficiency or tile parallelism prevents the 
GPU from running at peak utilization. This issue can be seen 
in Fig. 5, which shows the double FIFO filter performance 
when considering the total number of points ( K × P ). As 
can be seen, the GPU provides much better results than the 
CPU, but only if there is enough data to take advantage of 
the massive parallel execution capability of the GPU.

Comparing the results with previous works, for example 
in [31], the proposed procedure is around 4 times faster on 
similar hardware. These results confirm that the proposed 
approach to transform filtering into GEMM operations pro-
vides better results than directly designing ad hoc procedures 
based on SIMD and multicore parallelism.

The results presented in Table 1 indicate that for a ker-
nel length of 101, a commonly used length, the GPU only 
presents an advantage when the profile has more than 8000 
points. However, in most real scenarios profiles do not con-
tain this large number of points. The most common profile 
length is around 2000 points. In this scenario, with K = 101 
and P = 2000 , the CPU is the preferred running platform 
considering the results of the experiments. The batch filter-
ing approach is the proposed method in this work to improve 
GPU efficiency for this frequent scenario.

4.2 � Analysis of the GPU performance 
and bottlenecks

To determine the best approach to performing batch filtering, 
several tests are carried out to quantify the performance of a 
GPU in terms of data transfer and computation capabilities. 
In addition, the penalty imposed by data transfer from main 
memory to the GPU is analyzed.

The first test analyzes data transfer speed from main 
memory to the GPU. Because the GPU is plugged into the 
PCI express bus, this largely depends on how fast the PCI 
express bus is and the number of lanes assigned. Other pro-
grams using the bus may also affect the results. The results 

are presented in Fig. 6. In this experiment, data is allocated 
in main memory and then it is sent to the GPU. Data is then 
transferred back to the host main memory. The GPU used in 
the experiment uses 16-lane slots (PCIe3 x16), which could 
give a theoretical 15.75 GB/s. However, the results provide 
worse results. Peak send speed of 11.36 GB/s is achieved 
when transferring memory blocks of 16 MiB. Peak gather 
speed of 10.11 GB/s is achieved also at 16 MiB. This test 
indicates that the most efficient approach is to transfer data 
in blocks of large sizes.

The next test evaluates the read and write speed in main 
memory compared with the same operations on the GPU. 
The results are presented in Fig. 7. The GPU can transfer 
memory much faster than the main memory. Moreover, the 
GPU can transfer memory much faster than it can get data 
from main memory. The peak GPU read and write speed is 
691.09 GB/s at 2 MiB, i.e., it is around 70 times faster than 
data transfer from main memory to the GPU. The peak read 
and write speed in main memory is limited to 7.01 GB/s also 
at 2 MiB. This indicates that data transfer inside the GPU is 
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not a bottleneck, but the transfer from main memory. There-
fore, to make filtering more efficient it is crucial to minimize 
the number of memory transfers from main memory to the 
GPU. Data transfer inside the GPU is not that relevant for 
efficient operations. This is the reason why the double FIFO 
filter is more efficient, as it is based on periodical data trans-
fers of large blocks of memory inside the GPU.

The computational performance of the CPU and GPU 
is evaluated in Fig. 5. An additional test is performed to 
quantify the computational performance of a single matrix-
matrix multiplication. For a matrix of NxN the total num-
ber of floating-point operations (GFLOPS) is calculated 
as 2N3 − N2 . The results can be seen in Fig. 8. The test 
achieved peak calculation rates of 921.2 GFLOPS for the 
CPU and 13207.1 GFLOPS for the GPU.

These results indicate that memory transfers from host 
memory to GPU memory is slow compared with data trans-
fers inside the GPU memory. Thus, to improve the efficiently 
of the filtering process the number of transfers from the host 
memory to the GPU should be minimized, and they always 
need to be performed in large blocks. Also, when large data 
blocks are processed, GPUs are much faster than CPUs.

4.3 � The double FIFO batch filter

Table 2 shows the results of the experiments for small pro-
files (1000 and 2000 points per profile). The results show 
the execution time per profile in the CPU and GPU in �s for 
different values of B (batch size) and K = 101 . The benefit 
of using batches is clearly appreciable in the results, both in 
the CPU and the GPU. Also, when using a batch size of 75 
profiles, the GPU is faster than the CPU even for this small 
profiles of 1000 points. For slightly larger profiles with 2000 
points, a batch size of 8 profiles results in faster execution 
times in the GPU than in the CPU.

The comparison of the results in Table 2 with the results 
obtained previously in Table 1 shows that the execution in 
the CPU is worse when the batch size is small, but better 

when the batch size is increased, as it is more efficient to 
transfer large blocks of memory to the storage matrix. More-
over, for a medium batch size the penalty imposed by data 
transfer from main memory to the GPU is negligible. Thus, 
this batch filtering approach can be applied in the GPU for 
any profile size. This approach offloads the filtering task 
from the host CPU resulting in optimal system and applica-
tion response, as the CPU can run other tasks while the GPU 
is performing data filtering.

4.4 � Real‑time filtering for steel products

Surface metrology is applied in many different fields. Steel 
product manufacturing is among such fields where the sur-
face finishing quality of the products is of crucial impor-
tance. Therefore, it is analyzed in real-time to assess the 
manufactured products.

Figure  9 shows the results of the proposed filtering 
approach applied to steel strips. The raw surfaces repre-
sent sections of steel strips 2 ms wide, 5 ms long and with 
height variations around 5 mm. The filtering results show 
the removal of the roughness and the waviness from the 
measured surfaces. This type of filters are very common 
in these products to analyze different features, such as flat-
ness [34]. These filters are implemented using kernels cal-
culated considering different cutoff wavelengths that dis-
tinguish relevant from non-relevant information. As can be 
seen, the filters efficiently remove the non-relevant infor-
mation, generating the filtered surface in real-time with the 
manufacturing process. Acquiring the relevant information 
in real-time enables the extraction of features that indicate 
possible deviations of the surface from its intended shape, 
making quickly correcting actions possible and, thus, not 
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Table 2   Results of batch 
filtering for K = 101 and 
different values of profile length 
(P) and batch size (B). Al values 
are given in �s

P B CPU GPU

1000 1 17.8 25.4
1000 2 13.7 18.4
1000 4 13.9 14.4
1000 8 10.8 12.2
1000 25 10.9 10.8
1000 75 10.4 10.3
1000 150 10.2 10.2
1000 200 10.3 10.1
2000 1 20.8 26.2
2000 2 20.1 19.0
2000 4 14.0 15.0
2000 8 14.7 13.5
2000 25 13.1 11.9
2000 75 12.5 11.5
2000 150 12.6 11.3
2000 200 12.4 11.2



526	 Journal of Real-Time Image Processing (2022) 19:517–527

1 3

only improving the final quality but also the productivity of 
the manufacturing line.

In steel strip manufacturing, the most commonly used 
technique for surface metrology is laser triangulation based 
on line projectors. Profiles have from 1000 to 4000 points 
acquired at 1 to 4 kHz. The proposed filtering approach sur-
plus these requirements. Thus, the integration of the filtering 
task in this industrial application is straightforward, even 
making it possible to run data filtering in low-end computers.

5 � Conclusions

Real-time operations can be run on the GPU, providing 
superior performance and energy efficiency acceleration. 
However, in previous works the advantages are generally 
compensated by the penalty imposed by data transfer from 
main memory when processing small volumes of data. This 
work analyzes the performance of the CPU and the GPU 
for filtering operations required in surface metrology. The 
proposed approach is to transform filtering techniques into 
general matrix to matrix multiplications and, thus, take 
advantage of the extremely efficient code developed in this 
field pushed by recent advances in deep learning models.

Results indicate the proposed methods provide superior 
performance than previous works when running on the CPU. 
When filtering is applied on the GPU, the proposed methods 

provide major advantages for large profiles or kernels in 
terms of processing speed. However, small volumes of data 
are processed faster on the CPU, due to the penalty imposed 
by data transfer from main memory to the GPU. The solu-
tion proposed for this scenario, based on the analysis of the 
performance of the GPU, is batch filtering. Multiple profiles 
are transferred to the GPU in a single block of memory. Fol-
lowing this approach, filtering can be applied in the GPU 
for any profile size with better performance than the CPU. 
Therefore, the proposed batch filtering approach on the GPU 
not only provides an extremely efficient filtering method but 
also frees the CPU for other tasks. This represents a major 
advantage for a responsive real-time application. Further-
more, the proposed real-time approach is crucial for effective 
industrial applications, where engineering workpieces are 
characterized during the production process, which ensures 
they meet the required the specifications, minimizing down-
time and maximizing efficiency.
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