Skip to main content
Log in

FPGA-accelerated adaptive cartesian to polar conversion and efficient MI computation for image registration

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

In this paper, a high speed cartesian to polar conversion of an image and efficient Mutual Information (MI) computation methods have been proposed for high-speed multi-modal image registration. Further, a complete hardware-based system for computation of existing transformation parameters between two images has been developed. The proposed method speed up MI computation and cartesian to polar conversion of an image by detecting and discarding redundant computation. The proposed system is mapped in Field Programmable Gate Array (FPGA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Birk, M., Kretzek, E., Figuli, P., Weber, M., Becker, J., Ruiter, N.: High-speed medical imaging in 3d ultrasound computer tomography. Parallel Distributed Syst. IEEE Trans. 27(2), 455–467 (2016)

    Article  Google Scholar 

  2. Bowen, F., Hu, J., Du, E.Y.: A multistage approach for image registration. IEEE Trans. Cybernet. 46(9), 2119–2131 (2016)

    Article  Google Scholar 

  3. Brown, L.G.: A survey of image registration techniques. ACM Comput. Surveys (CSUR) 24(4), 325–376 (1992)

    Article  Google Scholar 

  4. Cadenas, J.O., Sherratt, R.S., Huerta, P., Kao, W.: Parallel pipelined array architectures for real-time histogram computation in consumer devices. IEEE Trans. Consumer Electron. 57(4), 1460–1464 (2011)

    Article  Google Scholar 

  5. Castro-Pareja, C.R., Shekhar, R.: Hardware acceleration of mutual information-based 3d image registration. J. Imaging Sci. Technol. 9(2), 105–113 (2005)

    Google Scholar 

  6. Chanwimaluang, T., Fan, G.: Retinal image registration for nih’s etdrs, pp. 51–59. Springer, Berlin Heidelberg, Berlin, Heidelberg (2005)

    Google Scholar 

  7. Esteghamatian, M., Azimifar, Z., Radau, P., Wright, G.: Real time cardiac image registration during respiration: a time series prediction approach. J. Real-Time Image Process. 8(2), 179–191 (2013)

    Article  Google Scholar 

  8. Gp, P., Pg, B., Dl, H., Dj, H., J., W.: Validation of a two- to three-dimensional registration algorithm for aligning preoperative ct images and intraoperative fluoroscopy images. Med. Phys. 6, 1024–1032 (2001)

  9. Guo, F., Zhao, X., Zou, B., Ouyang, P.: 3d reconstruction and registration for retinal image pairs, in ‘2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC)’, pp. 364–368 (2018)

  10. Han, L., Hipwell, J.H., Eiben, B., Barratt, D., Modat, M., Ourselin, S., Hawkes, D.J.: A nonlinear biomechanical model based registration method for aligning prone and supine mr breast images. IEEE Trans. Med. Imaging 33(3), 682–694 (2014)

    Article  Google Scholar 

  11. Harris, C., Stephens, M.: A combined corner and edge detector., in ‘Alvey vision conference’, Vol. 15, Manchester, UK, p. 50 (1988)

  12. Kim, J.-M., Song, M.-K., Kim, K.-H., Lee, W.-K.: ‘Key point detection and high speed image registration using blog’, 2, 245–249 (2010)

  13. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  14. Ma, Q., Du, X., Wang, J., Ma, Y., Ma, J.: Robust feature matching via gaussian field criterion for remote sensing image registration. J. Real-Time Image Process. 15(3), 523–536 (2018)

    Article  Google Scholar 

  15. Maintz, J., Viergever, M.A.: A survey of medical image registration. Med. Image Anal. 2(1), 1–36 (1998)

    Article  Google Scholar 

  16. Matungka, R., Zheng, Y.F., Ewing, R.L.: Image registration using adaptive polar transform. Image Process. IEEE Trans. 18(10), 2340–2354 (2009)

    Article  MathSciNet  Google Scholar 

  17. Mondal, P., Banerjee, S.: A reconfigurable memory-based fast vlsi architecture for computation of the histogram. IEEE Trans. Consumer Electron. 65(2), 128–133 (2019)

    Article  Google Scholar 

  18. Mondal, P., Banerjee, S.: Fpga-accelerated adaptive projection-based image registration. J. Real-Time Image Process. 18(1), 113–125 (2020)

    Article  Google Scholar 

  19. Nandalike, R., Sarojadevi, H.: Multimodal image feature detection with roi-based optimization for image registration. J. Real-Time Image Process. 17(4), 1007–1013 (2020)

    Article  Google Scholar 

  20. Shahbahrami, A., Hur, J. Y., Juurlink, B. and Wong, S. (2008), FPGA implementation of parallel histogram computation, in ‘2nd HiPEAC Workshop on Reconfigurable Computing, Göteborg, Sweden’, pp. 63–72

  21. Song, Y., Qu, J., Liu, C.: Real-time registration of remote sensing images with a markov chain model. J. Real-Time Image Process. 18(5), 1527–1540 (2020)

    Article  Google Scholar 

  22. Weese, J., Goecke, R., Penney, G.P., Desmedt, P., Buzug, T.M., Schumann, H.: Fast voxel-based 2d/3d registration algorithm using a volume rendering method based on the shear-warp factorization. Proc. SPIE 3661, 802–810 (1999)

    Article  Google Scholar 

  23. Zeng, Q., Adu, J., Liu, J., Xu, Y., Gong, M.: Real-time adaptive visible and infrared image registration based on morphological gradient and c sift. J. Real-Time Image Process. 17(5), 1103–1115 (2020)

    Article  Google Scholar 

  24. Zhi, X., Yan, Junhua, Hang, Y., Wang, S.: Realization of cuda-based real-time registration and target localization for high-resolution video images. J. Real-Time Image Process. 16(4), 1025–1036 (2019)

    Article  Google Scholar 

  25. Zitova, B., Flusser, J.: Image registration methods: a survey. Image Vis. Comput. 21(11), 977–1000 (2003)

    Article  Google Scholar 

  26. Zokai, S., Wolberg, G.: Image registration using log-polar mappings for recovery of large-scale similarity and projective transformations. Image Process. IEEE Trans. 14(10), 1422–1434 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pulak Mondal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, P. FPGA-accelerated adaptive cartesian to polar conversion and efficient MI computation for image registration. J Real-Time Image Proc 19, 529–537 (2022). https://doi.org/10.1007/s11554-022-01205-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-022-01205-3

Keywords

Navigation