Skip to main content
Log in

\(\hbox {ABDF}^{2}\)-Net: an adaptive bi-directional features fusion network for real-time detection of threat object

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

To achieve automatic detection of threat objects for X-ray baggage screening, we propose an adaptive bi-directional features fusion network (\(\hbox {ABDF}^{2}\)-Net) to detect threat objects on X-ray images. In \(\hbox {ABDF}^{2}\)-Net, an adaptive bi-directional feature fusion module (\(\hbox {ABDF}^{2}\hbox {M}\)) is introduced to fuse the multi-scale features from two directions, and the adaptive function is used to control the features passing rate. Besides, an atrous convolutional pyramid pooling (ACPP) is employed to capture global contextual information, which can provide global semantic guidance for multi-scale features. Finally, the fused multi-scale features are used to predict the final detection results through prediction modules. Experiments on the GDXray database demonstrate the effectiveness and superiority of our proposed method against the other four object detection methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Michel, S., Ruiter, J.C.D., Hogervorst, M., Koller, S.M., Schwaninger, A.: Computer-based training increases efficiency in X-ray image interpretation by aviation security screeners. In: IEEE International Carnahan Conference on Security Technology, pp. 201–206 (2007)

  2. Riffo, V., Mery, D.: Automated detection of threat objects using adapted implicit shape model. IEEE Trans. Syst. Man Cybernet. Syst. 46(4), 472–482 (2017)

    Article  Google Scholar 

  3. Mery, D., Svec, E., Arias, M.: Object recognition in baggage inspection using adaptive sparse representations of X-ray images. In: Pacific-rim Symposium on Image & Video Technology, pp. 709–720 (2015)

  4. Turcsany, D., Mouton, A., Breckon, T.P.: Improving feature-based object recognition for X-ray baggage security screening using primed visual words. In: IEEE International Conference on Industrial Technology, pp. 1140–1145 (2013)

  5. Bastan, M., Yousefi, M.R., Breuel, T.M.: Visual Words on Baggage X-ray Images. Springer (2011)

    Google Scholar 

  6. Uroukov, I., Speller, R.: A preliminary approach to intelligent X-ray imaging for baggage inspection at airports. Signal Process. Res. 4(5), 1–11 (2015)

    Article  Google Scholar 

  7. Franzel, T., Schmidt, U., Roth, S.: Object Detection in Multi-view X-ray Images. Springer (2012)

    Book  Google Scholar 

  8. Flitton, G., Breckon, T.P., Megherbi, N.: A comparison of 3D interest point descriptors with application to airport baggage object detection in complex CT imagery. Pattern Recogn. 46(9), 2420–2436 (2013)

    Article  Google Scholar 

  9. Megherbi, N., Han, J., Breckon, T.P., Flitton, G.T.: A comparison of classification approaches for threat detection in CT based baggage screening. In: IEEE International Conference on Image Processing, pp. 3109–3112 (2013)

  10. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

  12. Jhong, S.Y., Chen, Y.Y., Hsia, C.H., Lin, S.C., Hsu, K.H., Lai, C.F.: Nighttime object detection system with lightweight deep network for internet of vehicles. J. Real-Time Image Process. 18, 1141–1155 (2021)

    Article  Google Scholar 

  13. Li, J., Long, X., Hu, S., Hu, Y., Gu, Q.: A novel hardware-oriented ultra-high-speed object detection algorithm based on convolutional neural network. J. Real-Time Image Process. 17, 1703–1714 (2020)

    Article  Google Scholar 

  14. Amudhan, A.N., Vrajesh, S., Sudheer, A., Lijiya, A.: Rfsod: a lightweight single-stage detector for real-time embedded applications to detect small-size objects. J. Real-Time Image Process. 19, 133–146 (2022)

    Article  Google Scholar 

  15. Mery, D., Svec, E., Arias, M., Riffo, V., Saavedra, J.M., Banerjee, S.: Modern computer vision techniques for X-ray testing in baggage inspection. IEEE Trans. Syst. Man Cybernet. Syst. 47(4), 682–692 (2017)

    Article  Google Scholar 

  16. Akcay, S., Kundegorski, M.E., Willcocks, C.G., Breckon, T.P.: Using deep convolutional neural network architectures for object classification and detection within x-ray baggage security imagery. IEEE Trans. Inf. Forensics Secur. 13(9), 2203–2215 (2018)

    Article  Google Scholar 

  17. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6517–6525 (2017). https://doi.org/10.1109/CVPR.2017.690

  18. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)

    Article  Google Scholar 

  19. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  20. Law, H., Deng, J.: CornerNet: detecting objects as paired keypoints. arXiv preprint arXiv:1808.01244 (2018)

  21. Duan, K., Bai S., Xie, L., Qi, H., Huang, Q., Tian, Q.: CenterNet: keypoint triplets for object detection. arXiv preprint arXiv:1904.08189 (2019)

  22. Tian, Z., Shen, C., Chen, H., He, T.: Fcos: Fully convolutional one-stage object detection. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9626–9635 (2019)

  23. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs (2016)

  24. Ren, K., Huang, L., Fan, C., Han, H.G., Deng, H.: Real-time traffic sign detection network using DS-DetNet and lite fusion FPN. J. Real-Time Image Process. 18, 2181–2191 (2021)

    Article  Google Scholar 

  25. Howard, A., Sandler, M., Chen, B., Wang, W., Chen, L.C., Tan, M., Chu, G., Vasudevan, V., Zhu, Y., Pang, R., Adam, H., Le, Q.: Searching for mobilenetv3. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 1314–1324 (2019). https://doi.org/10.1109/ICCV.2019.00140

  26. Neubeck, A., Gool, L.: Efficient non-maximum suppression. In: International Conference on Pattern Recognition, pp. 850–855 (2006)

  27. Mery, D., Riffo, V., Zscherpel, U., Mondragón, G., Lillo, I., Zuccar, I., Lobel, H., Carrasco, M.: GDXray: the database of X-ray images for nondestructive testing. J. Nondestr. Eval. 34(4), 42 (2015)

    Article  Google Scholar 

  28. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in pytorch. In: 31st Conference on Neural Information Processing Systems (NIPS 2017), pp. 1–4 (2017)

  29. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980v8 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiliang Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Zhu, Z., Yu, H. et al. \(\hbox {ABDF}^{2}\)-Net: an adaptive bi-directional features fusion network for real-time detection of threat object. J Real-Time Image Proc 19, 739–749 (2022). https://doi.org/10.1007/s11554-022-01219-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-022-01219-x

Keywords

Navigation