Skip to main content
Log in

TC-YOLOv5: rapid detection of floating debris on raspberry Pi 4B

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Floating debris is a prominent indicator in measuring water quality. However, traditional object detection algorithms cannot meet the requirement of high accuracy due to the complexity of the environment. It is difficult for some deep learning-based object detection algorithms to achieve fast detection due to the limited performance of embedded devices. To address the above issues, this paper proposes TC-YOLOv5, which improves the detection accuracy by integrating the convolutional block attention module and vision transformer. To ensure the efficiency and low resource consumption of the algorithm, we selectively remove some convolutional layers and reduce some redundant calculations. We evaluated the performance of TC-YOLOv5 on a dataset with multiple species of floating debris, which can process an image in an average of 1.18 s on a Raspberry Pi 4B and achieve the mean average precision (mAP@0.5) of 84.2%. The detection accuracy, speed, and floating-point operations (FLOPs) of TC-YOLOv5 are better than some algorithms of the YOLOv5 series, such as YOLOv5n, YOLOv5s, and YOLOv5m. The above data show that TC-YOLOv5 realizes high-precision, low resource consumption, and rapid detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y.M.: YOLOv4: Optimal Speed and Accuracy of Object Detection (2020). https://doi.org/10.48550/arXiv.2004.10934

  2. Cheng, Y., Zhu, J., Jiang, M., Fu, J., Pang, C., Wang, P., Sankaran, K., Onabola, O., Liu, Y., Liu, D., Bengio, Y.: FloW: A Dataset and Benchmark for Floating Waste Detection in Inland Waters. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10933–10942 (2021). https://doi.org/10.1109/ICCV48922.2021.01077

  3. Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR), pp. 886–893 (2005). https://doi.org/10.1109/CVPR.2005.177

  4. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: transformers for image recognition at scale (2020). https://doi.org/10.48550/arXiv.2010.11929

  5. Feng, D., Haase-Schutz, C., Rosenbaum, L., Hertlein, H., Glaser, C., Timm, F., Wiesbeck, W., Dietmayer, K.: Deep multi-modal object detection and semantic segmentation for autonomous driving: datasets, methods, and challenges. IEEE Trans. Intell. Transp. Syst. 22, 1341–1360 (2021). https://doi.org/10.1109/TITS.2020.2972974

    Article  Google Scholar 

  6. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014). https://doi.org/10.1109/CVPR.2014.81

  7. Girshick, R.: Fast R-CNN, in: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1440–1448 (2015). https://doi.org/10.1109/ICCV.2015.169

  8. Glenn, J.: yolov5. Git code (2020). https://github.com/ultralytics/yolov5

  9. Guo, M.-H., Xu, T.-X., Liu, J.-J., Liu, Z.-N., Jiang, P.-T., Mu, T.-J., Zhang, S.-H., Martin, R.R., Cheng, M.-M., Hu, S.-M.: Attentionmechanisms in computer vision: a survey. Comput. Vis. Media 8, 331–368 (2022). https://doi.org/10.1007/s41095-022-0271-y

    Article  Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (Eds.), Computer Vision – ECCV2014, pp. 346–361 (2014). https://doi.org/10.1007/978-3-319-10578-9_23

  11. He K, Zhang X, Ren S, Sun J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Las Vegas, NV, USA, pp 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  12. Hearst, M.A., Dumais, S.T., Osuna, E., Platt, J., Scholkopf, B.: Support vector machines. IEEE Intell. Syst. Their Appl. 13, 18–28 (1998). https://doi.org/10.1109/5254.708428

    Article  Google Scholar 

  13. J. Hu, L. Shen and G. Sun.: Squeeze-and-Excitation Networks. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7132–7141 (2018). https://doi.org/10.1109/CVPR.2018.00745

  14. Latif SA, Khairuddin U, Khairuddin ASM.: Development of Machine Vision System for Riverine Debris Counting. In: 2021 6th IEEE International Conference on Recent Advances and Innovations in Engineering (ICRAIE). IEEE, Kedah, Malaysia, pp. 1–6 (2021). https://doi.org/10.1109/ICRAIE52900.2021.9704016

  15. Li, S.-A., Lin, Y.-C., Weng, C.-W., Chen, Y.-H., Lo, C.-H., Yang, M.-H., Hsieh, M.-H., Wong, C.-C.: Circle object recognition based on monocular vision for home security robot. In: 2012 International Symposium on Intelligent Signal Processing and Communications Systems, pp. 258–261 (2012). https://doi.org/10.1109/ISPACS.2012.6473491

  16. Li, X., Tian, M., Kong, S., Wu, L., Yu, J.: A modified YOLOv3 detection method for vision-based water surface garbage capture robot. Int. J. Adv. Robot. Syst. 17, 172988142093271 (2020). https://doi.org/10.1177/1729881420932715

    Article  Google Scholar 

  17. Lin, T.-Y., Dollar, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature Pyramid Networks for Object Detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 936–944 (2017). https://doi.org/10.1109/CVPR.2017.106

  18. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path Aggregation Network for Instance Segmentation. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8759–8768 (2018). https://doi.org/10.1109/CVPR.2018.00913

  19. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C.: SSD: Single Shot MultiBox Detector (2016). https://doi.org/10.1007/978-3-319-46448-0_2

  20. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, pp. 1150–1157 vol.2 (1999). https://doi.org/10.1109/ICCV.1999.790410

  21. Paller G, Élő G.: Towards a Floating Plastic Waste Early Warning System. In: Proceedings of the 11th International Conference on Sensor Networks. SCITEPRESS - Science and Technology Publications, Online Streaming, pp. 45–50(2022). https://doi.org/10.5220/0010894500003118

  22. Panwar, N.L., Kaushik, S.C., Kothari, S.: Role of renewable energy sources in environmental protection: a review. Renew. Sustain. Energy Rev. 15, 1513–1524 (2011). https://doi.org/10.1016/j.rser.2010.11.037

    Article  Google Scholar 

  23. Park J, Woo S, Lee J-Y, Kweon IS.: BAM: Bottleneck Attention Module (2018). https://doi.org/10.48550/arxiv.1807.06514

  24. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You Only Look Once: Unified, Real-Time Object Detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788 (2016). https://doi.org/10.1109/CVPR.2016.91

  25. Redmon, J., Farhadi, A.: YOLO9000: Better, Faster, Stronger. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6517–6525 (2017). https://doi.org/10.1109/CVPR.2017.690

  26. Redmon, J., Farhadi, A.: Yolov3: An incremental improvement (2018). https://doi.org/10.48550/arXiv.1804.02767

  27. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1137–1149 (2017). https://doi.org/10.1109/TPAMI.2016.2577031

    Article  Google Scholar 

  28. Wang, C.-Y., Mark Liao, H.-Y., Wu, Y.-H., Chen, P.-Y., Hsieh, J.-W., Yeh, I.-H.: CSPNet: A New Backbone that can Enhance Learning Capability of CNN. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1571–1580 (2020). https://doi.org/10.1109/CVPRW50498.2020.00203

  29. Wang Q, Wu B, Zhu P, Li P, Zuo W, Hu Q.: ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Seattle, WA, USA, pp 11531–11539 (2020). https://doi.org/10.1109/CVPR42600.2020.01155

  30. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: Convolutional Block Attention Module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (Eds.), Computer Vision – ECCV 2018, pp. 3–19 (2018). https://doi.org/10.1007/978-3-030-01234-2_1

  31. Xi, P., Guan, H., Shu, C., Borgeat, L., Goubran, R.: An integrated approach for medical abnormality detection using deep patch convolutional neural networks. Vis Comput 36, 1869–1882 (2020). https://doi.org/10.1007/s00371-019-01775-7

    Article  Google Scholar 

  32. Zailan, N.A., Mohd Khairuddin, A.S., Khairuddin, U., Taguchi, A.: YOLO-based Network Fusion for Riverine Floating Debris Monitoring System. In: 2021 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), pp. 1–5 (2021). https://doi.org/10.1109/ICECCE52056.2021.9514096

  33. Zhu X, Lyu S, Wang X, Zhao Q.: TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-captured Scenarios. In: 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). IEEE, Montreal, BC, Canada, pp 2778–2788 (2021). https://doi.org/10.1109/ICCVW54120.2021.00312

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubo Liu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Liu, S., Cai, Z. et al. TC-YOLOv5: rapid detection of floating debris on raspberry Pi 4B. J Real-Time Image Proc 20, 17 (2023). https://doi.org/10.1007/s11554-023-01265-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11554-023-01265-z

Keywords

Navigation