Skip to main content
Log in

An upper bound of the number of tests in pooling designs for the error-tolerant complex model

  • Original paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

Recently pooling designs have been used in screening experiments in molecular biology. In some applications, the property to be screened is defined on subsets of items, instead of on individual items. Such a model is usually referred to as the complex model. In this paper we give an upper bound of the number of tests required in a pooling design for the complex model (with given design parameters) where experimental errors are allowed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alon N., Beigel R., Kasif S., Rudich S. and Sudakov B. (2004). Learning a hidden matching. SIAM J. Comput. 33: 487–501

    Article  MathSciNet  MATH  Google Scholar 

  2. Beigel, R., Alon, N., Apaydin, M.S., Fortnow, L., Kasif, S.: An optimal procedure for gap closing in whole genome shotgun sequencing. In: Proceedings of 2001 RECOMB, pp. 22–30. ACM, New York (2001)

  3. Balding, D.J., Bruno, W.J., Knill, E., Torney, D.C.: A comparative survey of nonadaptive pooling designs. In: Genetic Mapping and DNA Sequencing, IMA Volumes in Mathematics and Its Applications, pp. 133–154. Springer, Berlin (1996)

  4. Chen H.B., Du D.Z. and Hwang F.K. (2007). An unexpected meeting of four seemingly unrelated problems: graph testing, DNA complex screening, superimposed codes and secure key distribution. J. Combin. Optim. 14: 121–129

    Article  MathSciNet  MATH  Google Scholar 

  5. Du D.Z. and Hwang F.K. (2000). Combinatorial Group Testing and Its Applications, 2nd edn. World Scientific, Singapore

    MATH  Google Scholar 

  6. Du D.Z. and Hwang F.K. (2006). Pooling Designs and Nonadaptive Group Testing: Important Tools for DNA Sequencing. World Scientific, Singapore

    MATH  Google Scholar 

  7. D’yachkov A.G., Vilenkin P.A., Macula A.J. and Torney D.C. (2002). Families of finite sets in which no intersection of ℓ sets is covered by the union of s others. J. Combin. Theory Ser. A 99: 195–218

    Article  MathSciNet  MATH  Google Scholar 

  8. Engel K. (1996). Interval packing and covering in the boolean lattice. Combin. Prob. Comput. 5: 373–384

    MathSciNet  MATH  Google Scholar 

  9. Grebinski V. and Kucherov G. (1998). Reconstructing a Hamiltonian cycle by querying the graph: application to DNA physical mapping. Discrete Appl. Math. 88: 147–165

    Article  MathSciNet  MATH  Google Scholar 

  10. Kim H.K. and Lebedev V. (2004). On optimal superimposed codes. J. Combin. Designs 12: 79–91

    Article  MathSciNet  MATH  Google Scholar 

  11. Lovász L. (1975). On the ratio of optimal integral and fractional covers. Discrete Math. 13: 383–390

    Article  MathSciNet  MATH  Google Scholar 

  12. Macula A.J. and Popyack L.J. (2004). A group testing method for finding patterns in data. Discrete Appl. Math. 144: 149–157

    Article  MathSciNet  MATH  Google Scholar 

  13. Macula A.J., Rykov V.V. and Yekhanin S. (2004). Trivial two-stage group testing for complexes using almost disjunct matrices. Discrete Appl. Math. 137: 97–107

    Article  MathSciNet  MATH  Google Scholar 

  14. Macula A.J., Torney D.C. and Vilenkin P.A. (1999). Two-stage group testing for complexes in the presence of errors. DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 55: 145–157

    MathSciNet  Google Scholar 

  15. Stinson D.R. and Wei R. (2004). Generalized cover-free families. Discrete Math. 279: 463–477

    Article  MathSciNet  MATH  Google Scholar 

  16. Stinson D.R., Wei R. and Zhu L. (2000). Some new bounds for cover-free families. J. Combin. Theory Ser. A 90: 224–234

    Article  MathSciNet  MATH  Google Scholar 

  17. Torney D.C. (1999). Sets pooling designs. Ann. Combin. 3: 95–101

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang H. and Xing C. (2001). Explicit constructions of perfect hash families from algebraic curves over finite fields. J. Combin. Theory Ser. A 93: 112–124

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Bin Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, HB., Fu, HL. & Hwang, F.K. An upper bound of the number of tests in pooling designs for the error-tolerant complex model. Optimization Letters 2, 425–431 (2008). https://doi.org/10.1007/s11590-007-0070-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-007-0070-5

Keywords

Navigation