Skip to main content
Log in

A smoothing algorithm for finite min–max–min problems

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

We generalize a smoothing algorithm for finite min–max to finite min–max–min problems. We apply a smoothing technique twice, once to eliminate the inner min operator and once to eliminate the max operator. In mini–max problems, where only the max operator is eliminated, the approximation function is decreasing with respect to the smoothing parameter. Such a property is convenient to establish algorithm convergence, but it does not hold when both operators are eliminated. To maintain the desired property, an additional term is added to the approximation. We establish convergence of a steepest descent algorithm and provide a numerical example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mayne D.Q., Polak E., Trahan R.: An outer approximations algorithm for computer-aided design problems. J. Optim. Theory Appl. 28(3), 331–352 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  2. Drezner Z., Thisse J.-F., Wesolowsky G.O.: The minimax–min location problem. J. Reg. Sci. 26(1), 87–101 (1986)

    Article  Google Scholar 

  3. Polak E., Royset J.O.: Algorithms for finite and semi-infinite min–max–min problems using adaptive smoothing techniques. J. Optim. Theory Appl. 119(3), 421–457 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bertsekas D.: Constrained Optimization and Lagrange Multiplier Methods. Athena Scientific, Nashua (1996)

    Google Scholar 

  5. Xingsi L.: An entropy-based aggregate method for minimax optimization. Eng. Opt. 18, 277–285 (1992)

    Article  Google Scholar 

  6. Xu S.: Smoothing method for minimax problems. Comput. Optim. Appl. 20(3), 267–279 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Polak E., Royset J.O., Womersley R.S.: Algorithms with adaptive smoothing for finite minimax problems. J. Optim. Theory Appl. 119(3), 459–484 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. De Bruijn, N.G.: Asymptotic methods in analysis, 2nd edn. Bibliotheca Mathematica, vol IV. North-Holland, Amsterdam (1961)

  9. Parpas P., Rustem B., Pistikopoulos E.N.: Linearly constrained global optimization and stochastic differential equations. J. Global Optim. 36(2), 191–217 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hwang C.: Laplace’s method revisited: weak convergence of probability measures. Ann. Probab. 8(6), 1177–1182 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  11. Polak, E.: Optimization. Applied Mathematical Sciences, vol. 124. In: Algorithms and consistent approximations. Springer, New York (1997)

  12. Bertsekas D.: Nonlinear Programming. Athena Scientific, Nashua (1999)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelos Tsoukalas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsoukalas, A., Parpas, P. & Rustem, B. A smoothing algorithm for finite min–max–min problems. Optim Lett 3, 49–62 (2009). https://doi.org/10.1007/s11590-008-0090-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-008-0090-9

Keywords

Navigation