Skip to main content
Log in

A mixed 0-1 linear programming formulation for the exact solution of the minimum linear arrangement problem

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

We are concerned with the exact solution of a graph optimization problem known as minimum linear arrangement (MinLA). Define the length of each edge of a graph with respect to a linear ordering of the graph vertices. Then, the MinLA problem asks for a vertex ordering that minimizes the sum of edge lengths. MinLA has several practical applications and is NP-Hard. We present a mixed 0-1 linear programming formulation of the problem, which led to fast optimal solutions for dense graphs of sizes up to n = 23.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams W.P., Sherali H.D.: Tight linearization and an algorithm for zero-one quadratic programming problems. Manage. Sci. 32, 1274–1290 (1986). doi:10.1287/mnsc.32.10.1274

    Article  MATH  MathSciNet  Google Scholar 

  2. Adams W.P., Guignard M., Hahn P.M., Hightower W.L.: A level-2 reformulation linearization technique bound for the quadratic assignment problem. Eur. J. Oper. Res. 180, 983–996 (2007). doi:10.1016/j.ejor.2006.03.051

    Article  MATH  MathSciNet  Google Scholar 

  3. Adolphson D., Hu T.C.: Optimal linear ordering. SIAM J. Appl. Math. 25(3), 403–423 (1973). doi:10.1137/0125042

    Article  MATH  MathSciNet  Google Scholar 

  4. Amaral A.R.S.: On the exact solution of a facility layout problem. Eur. J. Oper. Res. 173, 508–518 (2006). doi:10.1016/j.ejor.2004.12.021

    Article  MATH  MathSciNet  Google Scholar 

  5. Burkard R.E., Karisch S.E.: Rendl., F.: QAPLIB, A quadratic assignment problem library. J. Glob. Optim. 10, 391–403 (1997). doi:10.1023/A:1008293323270

    Article  MATH  MathSciNet  Google Scholar 

  6. Chung, F.R.K.: Labelings of graphs. In: Selected Topics in Graph Theory, vol. 3, pp. 151–168. Academic Press, San Diego (1988)

  7. Díaz J., Petit J., Serna M.: A survey on graph layout problems. ACM Comput. Surv. 34(3), 313–356 (2002). doi:10.1145/568522.568523

    Article  Google Scholar 

  8. Garey M.R., Johnson D.S.: Computers and Intractability: a Guide to the Theory of NP-Completeness. W.H. Freeman and Co, San Francisco (1979)

    MATH  Google Scholar 

  9. Goldberg M.K., Klipker I.A.: An algorithm for minimal numeration of tree vertices. Sakharth. SSR Mecn. Akad. Moambe 81(3), 553–556 (1976) [In Russian (English abstract at MathSciNet)]

    MathSciNet  Google Scholar 

  10. Harper L.H.: Optimal assignments of numbers to vertices. J. SIAM 12(1), 131–135 (1964)

    MATH  MathSciNet  Google Scholar 

  11. Horton, S.B.: The optimal linear arrangement problem: algorithms and approximation. Ph.D. Thesis, Georgia Institute of Technology (1997)

  12. ILOG, Inc.: CPLEX 10.1 User Manual. Gentilly Cedex, France (2006)

  13. Juvan M., Mohar B.: Optimal linear labelings and eigenvalues of graphs. Discrete Appl. Math. 36(2), 153–168 (1992). doi:10.1016/0166-218X(92)90229-4

    Article  MATH  MathSciNet  Google Scholar 

  14. Koren, Y., Harel, D.: A multi-scale algorithm for the linear arrangement problem. In: Kucera, L. (ed.) Revised Papers From the 28th international Workshop on Graph-theoretic Concepts in Computer Science (13–15 June 2002). Lecture Notes in Computer Science, vol. 2573, pp. 296–309. Springer, London (2002)

  15. Lai Y., Williams K.: A survey of solved problems and applications on bandwidth, edgesum, and profile of graphs. J. Graph Theory 31, 75–94 (1999). doi:10.1002/(SICI)1097-0118(199906)31:2<75::AID-JGT1>3.0.CO;2-S

    Article  MATH  MathSciNet  Google Scholar 

  16. Mitchison G., Durbin R.: Optimal numberings of an n × n array. SIAM J. Algebra. Discr. Methods. 7(4), 571–582 (1986). doi:10.1137/0607063

    Article  MATH  MathSciNet  Google Scholar 

  17. Muradyan D.O., Piliposjan T.E.: Minimal numberings of vertices of a rectangular lattice. Akad. Nauk. Armjan. SRR 1 70, 21–27 (1980) [In Russian (English abstract at MathSciNet)]

    MATH  MathSciNet  Google Scholar 

  18. Nugent C.E., Vollmann T.E., Ruml J.: An experimental comparison of techniques for the assignment of facilities to locations. Oper. Res. 16, 150–173 (1968). doi:10.1287/opre.16.1.150

    Article  Google Scholar 

  19. Petit, J.: Experiments on the minimum linear arrangement problem. ACM J. Exp. Algorithmics 8, article 2.3 (2003)

  20. Poranen T.: A genetic hillclimbing algorithm for the optimal linear arrangement problem. Fund. Inf. 68, 333–356 (2005)

    MATH  MathSciNet  Google Scholar 

  21. Ramakrishnan K.G., Resende M.C.G., Ramachandran B., Pekny J.F.: Tight QAP Bounds via Linear Programming. In: Pardalos, P.M., Migdalas, A., Burkard, R. (eds) Combinatorial and Global Optimization, pp. 297–303. World Scientific Publishing, Singapore (2002)

    Google Scholar 

  22. Resende M.G.C., Ramakrishnan K.G., Drezner Z.: Computing lower bounds for the quadratic assignment problem with an interior point algorithm for linear programming. Oper. Res. 43, 781–791 (1995). doi:10.1287/opre.43.5.781

    Article  MATH  MathSciNet  Google Scholar 

  23. Rodriguez-Tello E., Hao J.-K., Torres-Jimenez J.: Memetic algorithms for the MinLA problem. Lect. Notes Comput. Sci. 3871, 73–84 (2006). doi:10.1007/11740698_7

    Article  Google Scholar 

  24. Rodriguez-Tello E., Hao J.-K., Torres-Jimenez J.: An effective two-stage simulated annealing algorithm for the minimum linear arrangement problem. Comput. Oper. Res. 35(10), 3331–3346 (2008). doi:10.1016/j.cor.2007.03.001

    Article  MATH  Google Scholar 

  25. Safro I., Ron D., Brandt A.: Graph minimum linear arrangement by multilevel weighted edge contractions. J. Algorithms 60(1), 24–41 (2006). doi:10.1016/j.jalgor.2004.10.004

    Article  MATH  MathSciNet  Google Scholar 

  26. Shahrokhi F., Sýkora O., Székely L.A., Vrto I.: On bipartite drawings and the linear arrangement problem. SIAM J. Comput. 30(6), 1773–1789 (2001). doi:10.1137/S0097539797331671

    Article  MATH  MathSciNet  Google Scholar 

  27. Shiloach Y.: A minimum linear arrangement algorithm for undirected trees. SIAM J. Comput. 8(1), 15–32 (1979). doi:10.1137/0208002

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André R. S. Amaral.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amaral, A.R.S. A mixed 0-1 linear programming formulation for the exact solution of the minimum linear arrangement problem. Optim Lett 3, 513–520 (2009). https://doi.org/10.1007/s11590-009-0130-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-009-0130-0

Keywords

Navigation