Skip to main content
Log in

The generalized Tykhonov well-posedness for system of vector quasi-equilibrium problems

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this paper, the notion of the generalized Tykhonov well-posedness for system of vector quasi-equilibrium problems are investigated. By using the gap functions of the system of vector quasi-equilibrium problems, we establish the equivalent relationship between the generalized Tykhonov well-posedness of the system of vector quasi-equilibrium problems and that of the minimization problems. We also present some metric characterizations for the generalized Tykhonov well-posedness of the system of vector quasi-equilibrium problems. The results in this paper are new and extend some known results in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tykhonov A.N.: On the stability of the functional optimization problem. USSRJ. Comput. Math. Math. Phys. 6, 28–33 (1966)

    Article  Google Scholar 

  2. Levitin E.S., Polyak B.T.: Convergence of minimizing sequences in conditional extremum problem. Sov. Math. Doklady 7, 764–767 (1966)

    MATH  Google Scholar 

  3. Furi M., Vignoli A.: About well-posed optimization problems for functions in metric spaces. J. Optim. Theory Appl. 5, 225–229 (1970)

    Article  MATH  Google Scholar 

  4. Konsulova A.S., Revalski J.P.: Constrained convex optomization problems-well-posedness and stability. Numer. Funct. Anal. Optim. 15, 889–907 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  5. Zolezzi T.: Extended well-posedness of optimization problems. J. Optim. Theory Appl. 91, 257–266 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Huang X.X., Yang X.Q.: Generalized Levitin-Polyak well-posedness in constrained optimization. SIAM J. Optim. 17, 243–258 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bednarczuk, E.: Well-posedness of vector optimization problems. In: Lecture Notes in Economics and Mathematical Systems, vol. 294, pp. 51–61, Springer, Berlin (1987)

  8. Loridan P.: Well-posed Vector Optimization, Recent Developments in Well-Posed Variational Problems, Mathematics and its Applications. Kluwer, Dordrecht (1995)

    Google Scholar 

  9. Lucchetti R.: Well-posedness Towards Vector Optimization, Lecture Notes in Economics and Mathematical Systems. Springer, Berlin (1987)

    Google Scholar 

  10. Huang X.X.: Extended well-posed properties of vector optimization problems. J. Optim. Theory Appl. 106, 165–182 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Huang X.X.: Extended and strongly extended well-posed properties of set-valued optimization problems. Math. Meth. Oper. Res. 53, 101–116 (2001)

    Article  MATH  Google Scholar 

  12. Deng S.: Coercivity properties and well-posedness in vector optimization. RAIRO Oper. Res. 37, 195–208 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Huang X.X., Yang X.Q.: Levitin-Polyak well-posedness of constrained vector optimization problems. J. Glob. Optim. 37, 287–304 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Huang X.X., Yang X.Q., Zhu D.L.: Levitin-Polyak well-posedness of variational inequalities problems with functional constraints. J. Glob. Optim. 44, 159–174 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lignola, M.B., Morgan, J.: Approximating solutions and α-well-posedness for variational inequalities and Nash equilibria. In: Decision and Control in Management Science. Kluwer, Dordrecht pp. 367–378 (2002)

  16. Lucchetti R., Patrone F.: A characterization of Tykhonov well-posedness for minimum problems with applications to variational inequalities. Numer. Funct. Anal. Optim. 3(4), 461–476 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  17. Fang Y.P., Hu R.: Parametric well-posedness for variational inequalities defined by bifunctions. Comput. Math. Appl. 53, 1306–1316 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Fang Y.P., Huang N.J., Yao J.C.: Well-posedness of mixed variational inequalities, inclusion problems and fixed point problems. J. Glob. Optim. 41, 117–133 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Huang X.X., Yang X.Q.: Levitin-Polyak well-posedness in generalized variational inequalities problems with functional constraints. J. Ind. Manag. Optim. 3, 671–684 (2007)

    MATH  MathSciNet  Google Scholar 

  20. Ceng L.C., Yao J.C.: Well-posedness of generalized mixed variational inequalities, inclusion problems and fixed-point problems. Nonlinear Anal. 69, 4585–4603 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lignola M.B.: Well-posedness and L-well-posedness for quasivariational inequalities. J. Optim. Theory Appl. 128(1), 119–138 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Jiang B., Zhang J., Huang X.X.: Levitin-Polyak well-posedness of generalized quasivariational inequalities with functional constraints. Nonlinear Anal. 70, 1492–1530 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Xu Z., Zhu D.L., Huang X.X.: Levitin-Polyak well-posedness in generalized vector variational inequality problem with functional constraints. Math. Meth. Oper. Res. 67, 505–524 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Lignola M.B., Morgan J.: Vector quasi-variational inequalities: approximate solutions and well- posedness. J. Convex Anal. 13, 373–384 (2006)

    MATH  MathSciNet  Google Scholar 

  25. Long, X.J., Huang, N.J., Teo, K.L.: Levitin-Polyak well-posedness for equilibrium problems with functional constraints. J. Inequal. Appl. 14 (2008)

  26. Li S.J., Li M.H.: Levitin-Polyak well-posedness of vector equilibrium problems. Math. Meth. Oper. Res. 69, 125–140 (2008)

    Article  Google Scholar 

  27. Huang N.J., Long X.J., Zhao C.W.: Well-posedness for vector quasi-equilibrium problems with applications. J. Ind. Manag. Optim. 5, 341–349 (2009)

    MATH  MathSciNet  Google Scholar 

  28. Li M.H., Li S.J., Zhang W.Y.: Levitin-Polyak well-posedness of generalized vector quasi-equilibrium problems. J. Ind. Manag. Optim. 5, 683–696 (2009)

    MATH  MathSciNet  Google Scholar 

  29. Giannessi, F. (eds): Vector Variational Inequalities and Vector Equilibria: Mathematical Theoreies. Kluwer, Dordrecht (2000)

    Google Scholar 

  30. Ansari Q.H., Schaible S., Yao J.C.: The System of generalized vector equilibrium problems with applications. J. Glob. Optim. 23, 3–16 (2002)

    Article  MathSciNet  Google Scholar 

  31. Ansari Q.H., Schaible S., Yao J.C.: Systems of vector equilibrium problems and its applications. J. Optim. Theory Appl. 107, 547–557 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  32. Peng J.W., Yang X.M., Zhu D.L.: System of vector quasi-equilibrium problems and its applications. Appl. Math. Mech. 27(8), 1107–1114 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  33. Ansari Q.H., Chan W.K., Yang X.Q.: The system of vector quasi-equilibrium problems with applications. J. Glob. Optim. 29, 45–57 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  34. Peng J.W., Joseph Lee H.W., Yang X.M.: On system of generalized vector quasi-equilibrium problems with set-valued maps. J. Glob. Optim. 36, 139–158 (2006)

    Article  MATH  Google Scholar 

  35. Huang N.J., Li J., Yao J.C.: Gap functions and existence of solutions for a system of vector equilibrium problems. J. Optim. Theory Appl. 133, 201–212 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  36. Li J., Huang N.J.: An extension of gap functions for a system of vector equilibrium problems with applications to optimization problems. J. Glob. Optim. 39, 247–260 (2007)

    Article  MATH  Google Scholar 

  37. Kuratowski C.: Topology. Academic Press, New York (1966)

    Google Scholar 

  38. Hu S.C., Papageorgiou N.S.: Handbook of Multivalued Analysis Theory. Kluwer, Dordrecht (1997)

    MATH  Google Scholar 

  39. Aubin J.P., Ekeland I.: Applied Nonlinear Analysis. Wiley, New York (1984)

    MATH  Google Scholar 

  40. Chen G.Y., Yang X.Q., Yu H.: A nonlinear scalarization function and generalized quasi-vector equilibrium problems. J. Glob. Optim. 32, 451–466 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  41. Chen G.Y., Yang X.Q.: Characterizations of variable domination structures via nonlinear scalarization. J. Optim. Theory Appl. 112(1), 97–110 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  42. Gerth C., Weidner P.: Nonconvex separation theorems and some applications in vector optimization. J. Optim. Theory Appl. 67, 297–320 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  43. Dontchev A.L., Zolezzi T.: Well-Posed Optimization Problems. Springer, Berlin (1993)

    MATH  Google Scholar 

  44. Lucchetti R.: Convexity and well-posed problems. Springer, Berlin (2006)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Wen Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, JW., Wu, SY. The generalized Tykhonov well-posedness for system of vector quasi-equilibrium problems. Optim Lett 4, 501–512 (2010). https://doi.org/10.1007/s11590-010-0179-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-010-0179-9

Keywords

Navigation