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Classical linear vector optimization duality revisited ∗

Radu Ioan Boţ †, Sorin-Mihai Grad ‡, and Gert Wanka §

Abstract. With this note we bring again into attention a vector dual problem ne-
glected by the contributions who have recently announced the successful healing of the
trouble encountered by the classical duals to the classical linear vector optimization prob-
lem. This vector dual problem has, different to the mentioned works which are of set-valued
nature, a vector objective function. Weak, strong and converse duality for this “new-old”
vector dual problem are proven and we also investigate its connections to other vector
duals considered in the same framework in the literature. We also show that the efficient
solutions of the classical linear vector optimization problem coincide with its properly ef-
ficient solutions (in any sense) when the image space is partially ordered by a nontrivial
pointed closed convex cone, too.

Keywords. linear vector duality, cones, multiobjective optimization

1 Introduction and preliminaries

All the vectors we use in this note are column vectors, an upper index “T ” being used to
transpose them into row vectors. Having a set S ⊆ Rk, by int(S) we denote its interior.
By Rk

+ we denote the nonnegative orthant in Rk. We say that a set K ⊆ Rk is a cone
if λK ⊆ K for all λ ∈ R+. Then K induces on Rk a partial ordering “≦K” defined by
v ≦K w if w − v ∈ K. If v ≦K w and v 6= w we write v ≤K w. When K = Rk

+ these cone
inequality notations are simplified to “≦” and, respectively, “≤”. A cone K ⊆ Rk which
does not coincide with {0} or Rk is said to be nontrivial. A cone K is called pointed if
K ∩ (−K) = {0}. The set K∗ = {λ ∈ Rk : λT v ≥ 0 ∀v ∈ K} is the dual cone of the cone
K. The quasi-interior of K∗ is the set K∗0 = {λ ∈ Rk : λT v > 0 ∀v ∈ K\{0}}. The
recession cone of a convex set M ⊆ Rk is 0+M = {x ∈ Rk : M + x ⊆ M}. A set is said to
be polyhedral if it can be expressed as the intersection of some finite collection of closed
half-spaces. For other notions and notations used in this paper we refer to [9].

The vector optimization problems we consider in this note consist of vector-minimizing
or vector-maximizing a vector function with respect to the partial ordering induced in the
image space of the vector function by a nontrivial pointed closed convex cone. For the
vector-minimization problems we use the notation Min, while the vector-maximization
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ones begin with Max. The solution concepts considered for these problems are based on
the following minimality concepts for sets.

Let the space Rk be partially ordered by a nontrivial pointed closed convex cone
K ⊆ Rk and M ⊆ Rk be a nonempty set. An element x̄ ∈ M is said to be a minimal ele-
ment of M (regarding the partial ordering induced by K) if there exits no v ∈ M satisfying
v ≤K v̄. The set of all minimal elements of M is denoted by Min(M,K). Even if in the
literature there are several concepts of proper minimality for a given set (see [1, Section
2.4] for a review on this subject), we deal here only with the properly minimal elements of
a set in the sense of linear scalarization. Actually, all these proper minimality concepts co-
incide when applied to the primal classical linear vector optimization problem we treat in
this note, as we shall see later. An element v̄ ∈ M is said to be a properly minimal element
of M (in the sense of linear scalarization) if there exists a λ ∈ K∗0 such that λT v̄ ≤ λT v
for all v ∈ M . The set of all properly minimal elements of M (in the sense of linear
scalarization) is denoted by PMin(M,K). It can be shown that every properly minimal
element of M is also minimal, but the reverse assertion fails in general. Corresponding
maximality notions are defined by using the definitions from above. The elements of the
set Max(M,K) := Min(M,−K) are called maximal elements of M .

The classical linear vector optimization problem is

(P ) Min
x∈A

Lx,

A = {x ∈ Rn
+ : Ax = b}

where L ∈ Rk×n, A ∈ Rm×n, b ∈ Rm and the space Rk is partially ordered by the
nontrivial pointed closed convex cone K ⊆ Rk. The first relevant contributions to the
study of duality for (P ) were brought by Isermann in [4–6] for the case K = Rk

+. The
dual he assigned to it,

(DI) Max
U∈BI

hI(U),

where
BI =

{

U ∈ Rk×m : ∄x ∈ Rn
+ such that (L− UA)x ≤ 0

}

and
hI(U) = Ub,

turned out to work well only when b 6= 0 (see [7]).
The same drawback was noticed in [7,8] also for the so-called dual abstract optimization

problem to (P )
(DJ) Max

(λ,U)∈BJ

hJ(λ,U),

where
BJ =

{

(λ,U) ∈ K∗0 × Rk×m : (L− UA)Tλ ∈ Rn
+

}

and
hJ (λ,U) = Ub.

This issue was solved by particularizing the general vector Lagrange-type dual introduced
in [7], a vector dual to (P ) for which duality statements can be given for every choice of
b ∈ Rm being obtained, namely

(DL) Max
(λ,z,v)∈BL

hL(λ, z, v),
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where

BL =
{

(λ, z, v) ∈ K∗0 × Rm × Rk : λT v − zT b ≤ 0 and LTλ−AT z ∈ Rn
+

}

and
hL(λ, z, v) = v.

Recently, in [3] another vector dual to (P ) was proposed for which the duality assertions
were shown via complicated set-valued optimization techniques

(DH) Max
U∈BH

hH(U),

where
BH =

{

U ∈ Rk×m : ∄x ∈ Rn
+ such that (L− UA)x ≤K 0

}

and
hH(U) = Ub+Min

(

(L− UA)(Rn
+),K

)

.

Motivated by the results given in [3], we show in this note that a vector dual to
(P ) already known in the literature (see [2, 10]) has already “closed the duality gap in
linear vector optimization”. Its weak, strong and converse duality statements hold under
the same hypotheses as those for (DH) and no trouble appears when b = 0. Moreover,
this revisited vector dual to (P ) has a vector objective function, unlike (DH), where the
objective function is of set-valued nature, involving additionally solving another vector-
minimization problem. So far this vector dual was given only for the case K = Rk

+, but it
can be easily extended for an arbitrary nontrivial pointed closed convex cone K ⊆ Rk as
follows

(D) Max
(λ,U,v)∈B

h(λ,U, v),

where

B =
{

(λ,U, v) ∈ K∗0 × Rk×m × Rk : λT v = 0 and (L− UA)Tλ ∈ Rn
+

}

and
h(λ,U, v) = Ub+ v.

We refer the reader to [1, Section 5.5] for a complete analysis of the relations between
all the vector dual problems to (P ) introduced above in the case K = Rk

+.
The first new result we deliver in this note is the fact that the efficient and properly

efficient solutions to (P ) coincide in the considered framework, too, extending the classical
statement due to Isermann from [6] given forK = Rk

+. Then we prove for (D) weak, strong
and converse duality statements. Finally, we show that the relations of inclusions involving
the images of the feasible sets through their objective functions of the vector duals to (P )
from [1, Remark 5.5.3] remain valid in the current framework, too. Examples when the
“new-old” vector dual we propose here does not coincide with the other vector duals in
discussion are provided, too.
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2 Weak, strong and converse duality for (P ) and (D)

An element x̄ ∈ A is said to be a properly efficient solution (in the sense of linear
scalarization) to (P ) if Lx̄ ∈ PMin(L(A),K), i.e. there exists λ ∈ K∗0 such that
λT (Lx̄) ≤ λT (Lx) for all x ∈ A. An element x̄ ∈ A is said to be an efficient solution
to (P ) if Lx̄ ∈ Min(L(A),K), i.e. there exists no x ∈ A such that Lx ≤K Lx̄. Of course
each properly efficient solution (in the sense of linear scalarization) x̄ to (P ) is also efficient
to (P ). Let us recall now a separation result from the literature, followed by a statement
concerning the solutions of (P ).

Lemma 1. (cf. [3, Lemma 2.2(i)]) Let M ⊆ Rk a polyhedral set such that M∩K = {0}.
Then there exists γ ∈ Rk\{0} such that

γT k < 0 ≤ γTm ∀k ∈ K\{0} ∀m ∈ M.

Theorem 1. Every efficient solution to (P ) is properly efficient (in the sense of linear
scalarization) to (P ).

Proof. Let x̄ ∈ A be an efficient solution to (P ). Since A is, by construction, a
polyhedral set, via [9, Theorem 19.3] we get that L(A) is polyhedral, too. Consequently,
also L(A)−Lx̄ is a polyhedral set. The efficiency of x̄ to (P ) yields (L(A)−Lx̄)∩(−K) =
{0}, thus we are allowed to apply Lemma 1, which yields the existence of γ ∈ Rk\{0} for
which

γT (−k) < 0 ≤ γT (Lx− Lx̄) ∀k ∈ K\{0} ∀x ∈ A. (1)

Since γTk > 0 for all k ∈ K\{0}, it follows that γ ∈ K∗0. From (1) we obtain
γT (Lx̄) ≤ γT (Lx) for all x ∈ A, which, taking into account that γ ∈ K∗0, means ac-
tually that x̄ is a properly efficient solution (in the sense of linear scalarization) to (P ).�

Remark 1. In Theorem 1 we extend the classical result proven in a quite complicated
way in [6] for the special case K = Rk

+, showing that the efficient solutions to (P ) and
its properly efficient solutions (in the sense of linear scalarization) coincide. Actually, this
statement remains valid when the feasible set of (P ) is replaced by a set A for which L(A)
is polyhedral.

Remark 2. In the literature there were proposed several concepts of properly efficient
solutions to a vector optimization problem. Taking into account that all these properly ef-
ficient solutions are also efficient to the given vector optimization problem and the fact that
(see [1, Proposition 2.4.16]) the properly efficient solutions (in the sense of linear scalar-
ization) are properly efficient to the same problem in every other sense, too, Theorem 1
yields that for (P ) the properly efficient solutions (in the sense of linear scalarization) co-
incide also with the properly efficient solutions to (P ) in the senses of Geoffrion, Hurwicz,
Borwein, Benson, Henig and Lampe and generalized Borwein, respectively (see [1, Section
2.4]). Taking into account Theorem 1, it is obvious that it is enough to deal only with
the efficient solutions to (P ), since they coincide with all the types of properly efficient
solutions considered in the literature.
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Let us show now a Farkas-type result which allows us to formulate the feasible sets of
the vector dual problems to (P ) in a different manner.

Lemma 2. Let U ∈ Rk×m. Then (L − UA)(Rn
+) ∩ (−K) = {0} if and only if there

exists λ ∈ K∗0 such that (L− UA)Tλ ∈ Rn
+.

Proof. “⇒” The set (L−UA)(Rn
+) is polyhedral and has with the nontrivial pointed

closed convex cone −K only the origin as a common element. Applying Lemma 1 we
obtain a λ ∈ Rk\{0} for which

λT (−k) < 0 ≤ λT ((L− UA)x) ∀x ∈ Rn
+ ∀k ∈ K\{0}. (2)

Like in the proof of Lemma 1 we obtain that λ ∈ K∗0 and, by (2) it follows immediately
that (L− UA)Tλ ∈ Rn

+.
“⇐” Assuming the existence of an x ∈ Rn

+ for which (L−UA)x ∈ (−K)\{0}, it follows
λT ((L−UA)x) < 0, but λT ((L− UA)x) = ((L− UA)Tλ)Tx ≥ 0 since (L− UA)Tλ ∈ Rn

+

and x ∈ Rn
+. The so-obtained contradiction yields (L− UA)(Rn

+) ∩ (−K) = {0}. �

Further we prove for the primal-dual pair of vector optimization problems (P ) − (D)
weak, strong and converse duality statements.

Theorem 2. (weak duality) There exist no x ∈ A and (λ,U, v) ∈ B such that
Lx ≤K Ub+ v.

Proof. Assume the existence of x ∈ A and (λ,U, v) ∈ B such that Lx ≤K Ub+v. Then
0 < λT (Ub+v−Lx) = λT (U(Ax)−Lx) = −((L−UA)Tλ)Tx ≤ 0, since (L−UA)Tλ ∈ Rn

+

and x ∈ Rn
+. But this cannot happen, therefore the assumption we made is false. �

Theorem 3. (strong duality) If x̄ is an efficient solution to (P ), there exists (λ̄, Ū , v̄) ∈
B, an efficient solution to (D), such that Lx̄ = Ūb+ v̄.

Proof. The efficiency of x̄ to (P ) yields via Theorem 1 that x̄ is also properly efficient
to (P ). Thus there exists λ̄ ∈ K∗0 such that λ̄T (Lx̄) ≤ λ̄T (Lx) for all x ∈ A.

On the other hand, one has strong duality for the scalar optimization problem

inf
x∈A

{

λ̄T (Lx)
}

and its Lagrange dual

sup
{

− ηT b : η ∈ Rm, LT λ̄+AT η ∈ Rn
+

}

,

i.e. their optimal objective values coincide and the dual has an optimal solution, say η̄.
Consequently, λ̄T (Lx̄) + η̄T b = 0 and LT λ̄+AT η̄ ∈ Rn

+.

As λ̄ ∈ K∗0, there exists λ̃ ∈ K\{0} such that λ̄T λ̃ = 1. Let Ū := −λ̃η̄T and
v̄ := Lx̄− Ūb. It is obvious that Ū ∈ Rk×m and v̄ ∈ Rk. Moreover, λ̄T v̄ = λ̄T (Lx̄− Ūb) =
λ̄T (Lx̄) + η̄T b = 0 and (L − ŪA)T λ̄ = LT λ̄ + AT η̄ ∈ Rn

+. Consequently, (λ̄, Ū , v̄) ∈ B
and Ūb + v̄ = Ūb + Lx̄ − Ūb = Lx̄. Assuming that (λ̄, Ū , v̄) is not efficient to (D), i.e.
the existence of another feasible solution (λ,U, v) ∈ B satisfying Ūb + v̄ ≤K Ub + v, it
follows Lx̄ ≤K Ub+v, which contradicts Theorem 2. Consequently, (λ̄, Ū , v̄) is an efficient
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solution to (D) for which Lx̄ = Ūb+ v̄. �

Theorem 4. (converse duality) If (λ̄, Ū , v̄) ∈ B is an efficient solution to (D), there
exists x̄ ∈ A, an efficient solution to (P ), such that Lx̄ = Ūb+ v̄.

Proof. Let d̄ := Ūb+ v̄. Assume that A = ∅. Then b 6= 0 and, by Farkas’ Lemma there
exists z̄ ∈ Rm such that bT z̄ > 0 and AT z̄ ∈ −Rn

+. As λ̄ ∈ K∗0, there exists λ̃ ∈ K\{0}

such that λ̄T λ̃ = 1. Let Ũ := λ̃z̄T+Ū ∈ Rk×m. We have (L−ŨA)T λ̄ = (L−ŪA)T λ̄−AT z̄ ∈
Rn
+, thus (λ̄, Ũ , v̄) ∈ B. But h(λ̄, Ũ , v̄) = Ũb+ v̄ = λ̃z̄T b+ Ūb+ v̄ = λ̃z̄T b+ d̄ ≥K d̄, which

contradicts the efficiency of (λ̄, Ū , v̄) to (D). Consequently, A 6= ∅.
Suppose now that d̄ /∈ L(A). Using Theorem 2 it follows easily that d̄ /∈ L(A) + K,

too. Since A = A−1(b) ∩ Rn
+, we have 0+A = 0+(A−1(b)) ∩ 0+Rn

+. As 0+(A−1(b)) =
A−1(0+{b}) = A−1(0) and 0+Rn

+ = Rn
+, it follows 0+A = A−1(0) ∩ Rn

+. Then 0+L(A) =
L(0+A) = L(A−1(0) ∩ Rn

+) = {Lx : x ∈ Rn
+, Ax = 0} ⊆ (L − ŪA)(Rn

+) and, obviously,
0 ∈ 0+L(A).

Using Lemma 2 we obtain (L− ŪA)(Rn
+)∩ (−K) = {0}, thus, taking into account the

inclusions from above, we obtain 0+L(A) ∩ (−K) = {0} ⊆ K = 0+K. This assertion and
the fact that L(A) is polyhedral and K is closed convex yield, via [9, Theorem 20.3], that
L(A) +K is a closed convex set. Applying [9, Corollary 11.4.2] we obtain a γ ∈ Rk\{0}
and an α ∈ R such that

γT d̄ < α < γT (Lx+ k) ∀x ∈ A ∀k ∈ K. (3)

Assuming that γ /∈ K∗ would yield the existence of some k ∈ K for which γTk < 0.
Taking into account that K is a cone, this implies a contradiction to (3), consequently
γ ∈ K∗. Taking k = 0 in (3) it follows

γT d̄ < α < γT (Lx) ∀x ∈ A. (4)

On the other hand, for all x ∈ A one has 0 ≤ λ̄T ((L− ŪA)x) = λ̄T (Lx− Ūb) = λ̄T (Lx−
Ūb)− λ̄T v̄ = λ̄T (Lx− d̄), therefore

λ̄T d̄ ≤ λ̄T (Lx) ∀x ∈ A. (5)

Now, taking δ := α − γT d̄ > 0 it follows d̄T (sλ̄ + (1 − s)γ) = α − δ + s(λ̄T d̄ − α + δ)
for all s ∈ R. Note that there exists an s̄ ∈ (0, 1) such that s̄(λ̄T d̄ − α + δ) < δ/2 and
s̄(λ̄T d̄− α) > −δ/2, and let λ := s̄λ̄+ (1− s̄)γ. It is clear that λ ∈ K∗0.

By (4) and (5) it follows sλ̄T d̄+ (1− s)α < (sλ̄+ (1− s)γ)T (Lx) for all x ∈ A and all
s ∈ (0, 1), consequently

λT d̄ = s̄λ̄T d̄+ (1− s̄)γT d̄ = s̄λ̄T d̄+ (1− s̄)(α − δ)

<
δ

2
+ s̄(α− δ) + (1− s̄)(α− δ) = α−

δ

2
< λT (Lx) ∀x ∈ A. (6)

Since there is strong duality for the scalar linear optimization problem

inf
x∈A

{

λT (Lx)
}

and its Lagrange dual

sup
{

− ηT b : η ∈ Rm, LTλ+AT η ∈ Rn
+

}

,
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the latter has an optimal solution, say η̄, and infx∈A λT (Lx) + η̄T b = 0 and LTλ+AT η̄ ∈
Rn
+. As λ̄ ∈ K∗0, there exists λ̃ ∈ K\{0} such that λ̄T λ̃ = 1. Let U := −λ̃η̄T . It follows

that (L− UA)Tλ ∈ Rn
+ and infx∈A λT (Lx) = λT (Ub).

Consider now the hyperplane H := {Ub + v : λT v = 0}, which is nothing but the set
{w ∈ Rk : λTw = λT (Ub)}. Consequently, H ⊆ h(B). On the other hand, (6) yields
λT d̄ < λT (Ub). Then there exists a k̄ ∈ K\{0} such that λT (d̄+ k̄) = λT (Ub), which has
as consequence that d̄ + k̄ ∈ H ⊆ h(B). Noting that d̄ ≤K d̄ + k̄, we have just arrived to
a contradiction to the maximality of d̄ to the set h(B). Therefore our initial supposition
is false, consequently d̄ ∈ L(A). Then there exists x̄ ∈ A such that Lx̄ = d̄ = Ūb + v̄.
Employing Theorem 2, it follows that x̄ is an efficient solution to (P ). �

Remark 3. If x̄ ∈ A and (λ̄, Ū , v̄) ∈ B are, like in the results given above, such that
Lx̄ = Ūb+ v̄, then the complementarity condition x̄T (L− ŪA)T λ̄ = 0 is fulfilled.

Analogously to [3, Theorem 3.14] we summarize the results from above in a general
duality statement for (P ) and (D).

Corollary 1. One has Min(L(A),K) = Max(h(B),K).

To complete the investigation on the primal-dual pair of vector optimization problems
(P )− (D) we give also the following assertions.

Theorem 5. If A 6= ∅, the problem (P ) has no efficient solutions if and only if B = ∅.

Proof. “⇒” By [3, Lemma 2.1], the lack of efficient solutions to (P ) yields 0+L(A) ∩
(−K)\{0} 6= ∅. Then (L − UA)(Rn

+) ∩ (−K)\{0} 6= ∅ for all U ∈ Rk×m and employing
Lemma 2 we see that B cannot contain in this situation any element.

“⇐” Assuming that (P ) has efficient solutions, Theorem 3 yields that also (D) has an
efficient solution. But this cannot happen since the dual has no feasible elements, conse-
quently (P ) has no efficient solutions. �

Theorem 6. If B 6= ∅, the problem (D) has no efficient solutions if and only if A = ∅.

Proof. “⇒” Assume that A 6= ∅. If (P ) has no efficient solutions, Theorem 5 would
yield B = ∅, but this is false, therefore (P ) must have at least an efficient solution.
Employing Theorem 3 it follows that (D) has an efficient solution, too, contradicting the
assumption we made. Therefore A = ∅.

“⇐” Assuming that (D) has an efficient solution, Theorem 4 yields that (P ) has an
efficient solution, too. But this cannot happen since this problem has no feasible elements,
consequently (D) has no efficient solutions. �

3 Comparisons to other vector duals to (P )

As we have already mentioned in the first section (see also [1, Section 4.5 and Section 5.5]),
several vector dual problems to (P ) were proposed in the literature and for them weak,
strong and converse duality statements are valid under different hypotheses. For (DI)
(in case K = Rk

+) and (DJ) weak duality holds in general, but for strong and converse
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duality one needs to impose additionally the condition b 6= 0 to the hypotheses of the
corresponding theorems given for (D). For (DH) all three duality statements hold under
the hypotheses of the corresponding theorems regarding (D). Concerning (DL), weak and
strong duality were shown (for instance in [1]), but the converse duality statement does
not follow directly, so we prove it.

Theorem 7. If (λ̄, z̄, v̄) ∈ BL is an efficient solution to (DL), there exists x̄ ∈ A, an
efficient solution to (P ), such that Lx̄ = v̄.

Proof. Analogously to the proof of Theorem 4 it can be easily shown that A 6= ∅.
Since λ̄ ∈ K∗0, there exists λ̃ ∈ K\{0} such that λ̄T λ̃ = 1. Let U := (z̄λ̃T )T . Then
UT λ̄ = z̄λ̃T λ̄ = z̄. Thus, (L−UA)T λ̄ = LT λ̄−ATUT λ̄ = LT λ̄−AT z̄ ∈ Rn

+. Assuming the
existence of some x ∈ Rn

+ for which (L−UA)x ∈ −K\{0}, it follows λ̄T ((L−UA)x) < 0.
But λ̄T ((L − UA)x) = xT ((L − UA)T λ̄) ≥ 0, since x ∈ Rn

+ and (L− UA)T λ̄ ∈ Rn
+. This

contradiction yields (L − UA)(Rn
+) ∩ (−K) = {0}. Like in the proof of Theorem 4, this

result, together with the facts that L(A) is polyhedral and K is closed convex implies,
via [9, Theorem 20.3], that L(A) + K is a closed convex set. The existence of x̄ ∈ A
properly efficient, thus also efficient, solution to (P ) fulfilling Lx̄ = v̄ follows in the lines
of [1, Theorem 4.3.4] (see also [1, Section 4.5.1]). �

Let us see now what inclusions involving the images of the feasible sets through their
objective functions of the vector duals to (P ) considered in this paper can be established.
In [3] it is mentioned that hJ(BJ) ⊆ hH(BH), an example when these sets do not coincide
being also provided. For (D) and (DH) we have the following assertion.

Theorem 8. It holds hH(BH) ⊆ h(B).

Proof. Let d ∈ hH(BH). Thus, there exist Ū ∈ BH and an efficient solution x̄ ∈ Rn
+

to
Min
x∈Rn

+

{(L− ŪA)x}, (7)

such that d = hH(Ū) = Ūb+ (L− ŪA)x̄.
The efficiency of x̄ to the problem (7) yields, via Theorem 1, that x̄ is a properly

efficient solution to this problem, too. Consequently, there exists γ ∈ K∗0 such that

γT ((L− ŪA)x̄) ≤ γT ((L− ŪA)x) ∀x ∈ Rn
+. (8)

This yields γT ((L − ŪA)x̄) ≤ 0. On the other hand, taking in (8) x := x + x̄ ∈ Rn
+ it

follows immediately γT ((L − ŪA)x) ≥ 0 for all x ∈ Rn
+. Therefore γT ((L − ŪA)x̄) ≥ 0,

consequently γT ((L − ŪA)x̄) = 0. Taking v̄ = (L − ŪA)x̄, it follows γT v̄ = 0 and, since
γT (L − ŪA) ∈ Rn

+, also (γ, Ū , v̄) ∈ B. As d = hH(Ū ) = Ūb + (L − ŪA)x̄ = Ūb + v̄ =
h(γ, Ū , v̄) ∈ h(B), we obtain hH(BH) ⊆ h(B). �

Remark 4. An example showing that the just proven inclusion can be sometimes strict
was given in [1, Example 5.5.1].

Theorem 9. It holds h(B) ⊆ hL(BL).

Proof. Let d ∈ h(B). Thus, there exist (λ,U, v) ∈ B such that d = h(λ,U, v) = Ub+v.
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Let z := UTλ. Then λTd = λT (Ub + v) = (λT (Ub + v))T = bT (UTλ) + vTλ = bT z,
while LTλ − AT z = LTλ − AT (UTλ) = (L − UA)Tλ ∈ Rn

+. Consequently, (λ, z, d) ∈ BL

and, since d = h(λ,U, v) = hL(λ, z, d) ∈ hL(BL), it follows that h(B) ⊆ hL(BL). �

Remark 5. To show that the inclusion proven above does not turn into equality in
general, consider the following situation. Let n = 1, k = 2, m = 2, L = (0, 0)T , A =
(1, 1)T , b = (−1,−1)T and K = R2

+. Then, for v = (−1,−1)T , λ = (1, 1)T and z = (0, 0)T

we have (λ, z, v) ∈ BL since λT v = −2 ≤ 0 = zT b and LTλ − AT z = (0, 0)T ∈ R2
+.

Consequently, hL(λ, z, v) = (−1,−1)T ∈ hL(BL).
On the other hand, assuming that (−1,−1) ∈ h(B), there must exist (λ̄, Ū , v̄) ∈ B

such that h(λ̄, Ū , v̄) = Ūb + v̄ = (−1,−1)T . Then λ̄T (Ū b + v̄) = −λ̄1 − λ̄2 < 0, where
λ̄ = (λ̄1, λ̄2)

T ∈ (R2
+)

∗0 = int(R2
+). But λ̄T (Ūb + v̄) = λ̄T Ū(−1,−1)T = −(ŪA)T λ̄ =

(L − ŪA)T λ̄ ≥ 0, which contradicts what we obtained above as a consequence of the
assumption we made. Therefore (−1,−1) /∈ h(B).

4 Conclusions

Taking into consideration what we have proven in this note, one can conclude that the
images of the feasible sets through their objective functions of the vector duals to (P ) we
dealt with respect the following inclusions chain

hJ(BJ) $ hH(BH) $ h(B) $ hL(BL),

while the the sets of maximal elements of these sets fulfill

Max(hJ (BJ),K) $ Min(L(A),K) = Max(hH(BH),K)

= Max(h(B),K) = Max(hL(BL),K).

Thus the schemes from [1, Remark 5.5.3] remain valid when the vector-minimization/
maximization is considered with respect to a nontrivial pointed closed convex coneK ⊆ Rk.

Therefore, we have brought into attention with this note a valuable but neglected
vector dual to the classical linear vector optimization problem. The image of the feasible
set through its objective function of this “new-old” vector dual lies between the ones
of the vector duals introduced in [3] and [7], respectively, all these three sets sharing
the same maximal elements. Different to the vector dual introduced in [3], the dual we
consider is defined without resorting to complicated constructions belonging to set-valued
optimization and the duality statements regarding it follow more directly. Solving our
vector dual problem does not involve the determination of the sets of efficient solutions
of two vector optimization problems, as is the case for the vector dual from [3]. Different
to the Lagrange-type vector dual from [7], the revisited vector dual we consider preserves
the way the classical vector dual problem due to Isermann and the dual abstract linear
optimization problem were formulated, improving their duality properties by not failing
like them when b = 0.

Moreover, we have extended a classical result due to Isermann, showing that the effi-
cient solutions to the classical linear vector optimization problem coincide with the prop-
erly efficient elements in any sense to it also when the vector-minimization is considered
with respect to a nontrivial pointed closed convex cone K ⊆ Rk instead of Rk

+.
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