
HAL Id: hal-01170471
https://hal.science/hal-01170471

Submitted on 3 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Discrete Lot Sizing and Scheduling on Identical
Parallel Machines

Céline Gicquel, Laurence Wolsey, Michel Minoux

To cite this version:
Céline Gicquel, Laurence Wolsey, Michel Minoux. On Discrete Lot Sizing and Scheduling on Identical
Parallel Machines. Optimization Letters, 2012, 6, pp.545-557. �10.1007/s11590-011-0280-8�. �hal-
01170471�

https://hal.science/hal-01170471
https://hal.archives-ouvertes.fr


Discrete Lot-Sizing and Scheduling on Identical Parallel

Machines

C. Gicquel L. A. Wolsey M. Minoux

Abstract

We consider the multi-item discrete lot-sizing and scheduling problem on identical parallel
machines. Based on the fact that the machines are identical, we introduce aggregate integer
variables instead of individual variables for each machine. For the problem with start-up
costs, we show that the inequalities based on a unit flow formulation for each machine can be
replaced by a single integer flow formulation without any change in the resulting LP bound.
For the resulting integer lot-sizing with start-ups subproblem, we show how inequalities for
the unit demand case can be generalized and how an approximate version of the extended
formulation of Eppen and Martin can be constructed. The results of some computational
experiments carried out to compare the effectiveness of the various mixed-integer programming
formulations are presented.

Keywords: Discrete lot-sizing and scheduling Identical parallel machines Mixed-integer
linear programming, Reformulation Valid inequalities

1 Introduction

In the present paper, we consider the multi-item discrete lot-sizing and scheduling problem on
identical parallel machines.

The case with one machine, known as the discrete lot-sizing and scheduling problem (DLSP)
has the particularity that at most one item is produced per period, that production of that item (if
any) is at full capacity and that start-up or changeover costs have to be incurred when switching
production from one item to another. A natural subproblem of this model is the single item
discrete lot-sizing problem with start-ups, where there are linear production and storage costs
and fixed production and start-up costs. For this Van Eijl and van Hoesel [11] have presented
valid inequalities and van Hoesel and Kolen [12] have provided a tight and compact extended
formulation.

A different single-item parallel resource model with start-ups was used by Lasdon and Terjung
[7, 8]. Here the demands are integers, the amount produced is integral and there are linear pro-
duction, storage and start-up costs. Eppen and Martin [4] have given a tight extended formulation
and Vanderbeck and Wolsey [10] have derived several families of valid inequalities. The multi-item
problem with several machines has also been studied recently by Gicquel et al. [5].

The purpose of this paper is threefold. We first introduce in Section 2 two formulations of
the problem, using either machine-specific binary variables or aggregate integer variables, and
provide equivalence results between these two formulations. In Section 3 we propose two ways of
strengthening the second formulation involving the aggregate integer variables. On the one hand,
we develop an approximate extended formulation based on the extended formulation proposed in
[4], and on the other we derive a new family of valid inequalities, that can be seen as an extension to
the parallel-machine case of the valid inequalities proposed in [11] for the single-machine problem.
Finally in Section 4 we provide some computational results carried out to compare the various
formulations of the problem. Our results indicate that it is possible to solve instances with 10 or
more items, up to 10 machines and up to 50 periods to optimality, and that for instances with up
to 150 periods, solutions within 5% of optimality can be obtained in less than 10 minutes.

1



2 Problem Formulations and Equivalence Results

We first give a formulation for the problem with start-up costs and machine specific 0-1 variables.
There are I items, T periods and K identical machines. As the machines are identical and produce
just one item at full capacity in a period, the demand is measured in units of full capacity. The
data consists of the demands dit for item i in period t, the (machine-independent) production cost
pit of producing item i on one of the machines in period t, the (machine-independent) start-up cost
qit of starting to produce item i on a machine in period t and hit the storage cost for item i at the
end of period t. Note that one can assume without loss of generality that dit ∈ {0, 1, . . . ,K}. Also
an additional item, item 0, is introduced to represent the case when a machine is idle.

The variables are:
- yikt = 1 if item i ∈ {0, . . . , I} is produced on machine k in period t, and yikt = 0 otherwise
- zikt = 1 if production of item i on machine k is started in period t, and zikt = 0 otherwise,
- sit is the stock of item i at the end of period t.

The corresponding formulation is:

vBIN = min

I∑
i=1

K∑
k=1

T∑
t=1

(pity
ik
t + qitz

ik
t ) +

I∑
i=1

T∑
t=1

hits
i
t (1)

sit−1 +

K∑
k=1

yikt = dit + sit ∀ i, t (2)

zikt ≥ yikt − yikt−1 ∀ i, k, t (3)

zikt ≤ yikt ∀ i, k, t (4)

yikt−1 + zikt ≤ 1−
∑
j:j 6=i

(yjkt − z
jk
t ) ∀ i, k, t (5)

I∑
i=0

yikt = 1 ∀ k, t (6)

s ∈ RIT+ , y, z ∈ {0, 1}(I+1)KT (7)

Note that inequality (5) is a strengthened version of the more standard inequality yikt−1+zikt ≤ 1,
see Constantino [2].

Let Qyz be the polyhedron {(y, z) ∈ R(I+1)KT
+ × R(I+1)KT

+ : (3) − (6)} and Xyz = Qyz ∩
Z(I+1)KT × Z(I+1)KT .

We now introduce the aggregate variables

Y it =

K∑
k=1

yikt and Zit =

K∑
k=1

zikt (8)

and the resulting aggregated formulation

vINT = min

I∑
i=1

T∑
t=1

(pitY
i
t + qitZ

i
t + hits

i
t) (9)

sit−1 + Y it = dit + sit ∀ i, t (10)

Zit ≥ Y it − Y it−1 ∀ i, t (11)

Zit ≤ Y it ∀ i, t (12)

Y it−1 + Zit ≤ K −
∑
j:j 6=i

(Y jt − Z
j
t ) ∀ i, t (13)

I∑
i=0

Y it = K ∀ t (14)

2



s ∈ RIT+ , y, z ∈ Z(I+1)T
+ . (15)

Note that the slack variable in (11), Ωit−1 = Zit − Y it + Y it−1, can be seen as the number of
machines turned off in period t− 1.

As above, let QY Z be the polyhedron {(Y, Z) ∈ R(I+1)T
+ × R(I+1)T

+ : (11)− (14)} and XY Z =

QY Z ∩ Z(I+1)T × Z(I+1)T .
It is easily verified that if (y, z) ∈ Qyz and Y,Z are defined as in (8), then (Y,Z) ∈ QY Z .

Below we establish the converse.

Theorem
i) If (Y, Z) ∈ QY Z/XY Z , then there exists (y, z) ∈ Qyz/Xyz satisfying (8),
ii) Qyz = conv(Xyz) and QY Z = conv(XY Z).

Proof
The proof involves an extended formulation for Qyz and QY Z . As in Belvaux and Wolsey [1], we

define the changeover variables as wijkt = 1 if item i is produced on machine k in period t− 1 and

item j is produced in period t and wijkt = 0 otherwise, and the polyhedron P yzw:∑
i

wijkt = yjkt ∀ j, k, t (16)∑
j

wijkt = yikt−1 ∀ i, k, t (17)

∑
i:i 6=j

wijkt = zjkt ∀ j, k, t (18)

∑
i

yik1 = 1 ∀ k (19)

w ∈ R(I+1)2KT
+ , y, z ∈ R(I+1)KT

+ . (20)

We also introduce the aggregate changeover variables

W ij
t =

K∑
k=1

wijkt (21)

leading to the aggregated polyhedron PY ZW :∑
i

W ij
t = Y jt ∀ j, t (22)∑

j

W ij
t = Y it−1 ∀ i, t (23)

∑
i:i6=j

W ij
t = Zjt ∀ j, t (24)

∑
i

Y i1 = K (25)

W ∈ R(I+1)2T
+ , Y, Z ∈ R(I+1)T

+ . (26)

Constantino [2] has shown that Qyz is the projection of P yzw onto the space of the y, z variables.
The argument uses the max-flow/min cut theorem applied to (16)-(17) viewed as a transportation
network. As P yzw is an integral polytope, this implies that Qyz is also an integral polytope. An
identical argument holds for PXY Z and QY Z .

It remains to show that if (Y, Z,W ) ∈ PY ZW , then there exists a decomposed machine specific
solution (y, z, w) ∈ P yzw satisfying the aggregation equations (8) and (21). However (22),(23),(26)

3



Figure 1: An Integer K-flow (with K=3)

define a flow of K units through the network shown in Figure 1. By standard results on flows,
any such flow decomposes into K unit flows, and any integer flow decomposes into K unit integer
flows.

The result follows as now any (Y, Z) ∈ QY Z corresponds to a (Y,Z,W ) ∈ PY ZW which, as
just shown, corresponds to a (y, z, w) ∈ P yzw and hence to a (y, z) ∈ Qyz, and integer solutions
also lead to integer solutions.

It follows that the aggregated and disaggregated formulations are equivalent both as integer
and linear programs. Let vBINLP , vINTLP denote the values of the linear programming relaxations of
(1)-(7) and (9)-(15) respectively.

Corallary
vINT = vBIN and vINTLP = vBINLP .

The potential benefits from use of the aggregated formulation are i) its smaller size and ii)
the fact that the most obvious problems of symmetry of the solutions of the disaggregated model
are removed. Note also that whereas complete enumeration of the y vectors in the disaggregated
model gives (2K)(I+1)T distinct vectors, the number of Y vectors in the aggregated model is
(K + 1)(I+1)T .

3 Strengthening the Aggregate Formulation

Here we consider ways to strengthen the formulation (9)-(15), and in particular the single item
set XLT :

st−1 + Yt = dt + st ∀ t (27)

Zt ≥ Yt − Yt−1 ∀ t (28)

Zt ≤ Yt ∀ t (29)

Y, Z ∈ {0, 1, · · · ,K}T (30)

treated by Lasdon-Terjung [8].
From now on we will use the notation dut ≡

∑t
j=u dj , Yut ≡

∑t
j=u Yj , etc., with a superscript

i to denote the item when appropriate.
Two ways to strengthen this formulation have been proposed. Eppen and Martin [4] gave an

extended formulation for conv(XLT ) with O(K2Td1T ) variables and O(KTd1T ) constraints. Van-
derbeck and Wolsey [10] gave three families of valid inequalities along with separation heuristics.
Here we give an approximate version of the extended formulation, and also show how a family of
inequalities developed by Van Eijl and Van Hoesel [11] can be adapted to give valid inequalities
for this model.

4



3.1 An Approximate Extended Formulation

We modify the extended formulation given by Eppen and Martin [4]. The approximation is
obtained by aggregating nodes and arcs whenever the stock level exceeds some user specified value
∆.

We now describe the construction, given an approximation parameter ∆ and the fact Yt is
bounded by the number of machines K. One constructs a directed graph D = (V,A) with nodes
(t, α, β) where t represents the time period, α represents Y1t and β represents Yt for d1t ≤ α ≤
d1t+∆ and nodes (t, α) for d1t+∆ < α ≤ d1T . The arcs (t, α, β, γ) depart from node (t, α, β) and
arrive at either node (t+1, α+γ, γ) or node (t+1, α+γ) with corresponding variables u(t, α, β, γ).
The second set of arcs depart from node (t, α) and arrive at either node (t+ 1, α + γ, γ) or node
(t+ 1, α+ γ) with corresponding variables v(t, α, γ). See Figure 2.

Thus the arc variables are defined as follows:
- u(t, α, β, γ) = 1 if Y1t = α, Yt = β, Yt+1 = γ, and 0 otherwise with d1t ≤ α ≤ min(d1t + ∆, d1T ),
d1T ≥ α+ Yt+1 ≥ d1,t+1, Yt, Yt+1 ∈ {0, · · · ,K}, and
- v(t, α, γ) = 1 if Y1t = α, Yt+1 = γ, and 0 otherwise with d1T ≥ α > d1t + ∆, d1T ≥ α + Yt+1 ≥
d1,t+1, Yt, Yt+1 ∈ {0, · · · ,K}.

The resulting “approximate dynamic programming” formulation is:

u(0, 0, 0) = 1 (31)∑
γ

u(t, α, β, γ) =
∑
γ

u(t− 1, α− β, γ, β) + v(t− 1, α− β, β) ∀nodes (t, α, β) (32)

∑
γ

v(t, α, γ) =
∑
β

[∑
γ

u(t− 1, α− β, γ, β) + v(t− 1, α− β, β)
]
∀nodes (t, α) (33)

Yt =
∑
α,γ

γ
[∑

β

u(t− 1, α, β, γ) + v(t− 1, α, γ)
]
∀ t (34)

Zt ≥
∑
α,β,γ

(γ − β)+u(t, α, β, γ) ∀ t (35)

Zt ≥ Yt − Yt−1 ∀ t (36)

Zt ≤ Yt ∀ t (37)

Y, Z ∈ [0,K]T , u(t, α, β, γ) ∈ R1
+ ∀ t, α, β, γ, v(t, α, β) ∈ R1

+ ∀ t, α, β, (38)

where D = maxt dt. Note that when ∆ = d1T , the v variables and the equations (33) disappear
and one obtains the original extended formulation from [4] with equality in (35).

Figure 2: The variables in the approximate extended formulation

3.2 A Family of Valid Inequalities

We show that the valid inequalities of Van Eijl and Van Hoesel [11] derived for the case where
Yt ∈ {0, 1} and dt ∈ {0, 1} for all t are also valid for XLT . Specifically we break the integer
demands dt into demands of one unit. Thus given an interval [t, l], we say that the qth unit of

5



demand occurs in period tq if dt,tq−1 < q and dt,tq ≥ q. Thus t ≤ t1 ≤ · · · ≤ tq ≤ · · · ≤ tp ≤ l.

Proposition
The inequality

st−1 +

p∑
q=1

(Yt+q−1 + Zt+q,tq ) ≥ p (39)

is valid for XLT , where dtl = p and t+ q < tq for q = 1, . . . , p.

Proof
Let α(t, p) be the expression on the left of the inequality. We use induction.
Initial step. From flow conservation and the definition of t1, st−1 + Yt,t1 ≥ 1. So either st−1 ≥ 1,
or Yt,t1 ≥ 1. However Yt,t1 ≥ 1 if and only if Yt + Zt+1,t1 ≥ 1, and the claim follows.
Inductive step. We assume that α(t, p) ≥ p is valid. There are two cases.
Case 1. Yt+p + Zt+p+1,tp+1

≥ 1. Adding this inequality to the inequality α(t, p) ≥ p gives
α(t, p+ 1) ≥ p+ 1.
Case 2. Yt+p + Zt+p+1,tp+1 = 0. This implies that Yu = 0 for u = t+ p, · · · , tp+1, which in turn
implies that

st−1 + Yt,t+p−1 = st−1 + Yt,tp+1
≥ dt,tp+1

≥ p+ 1,

where the first inequality follows from the flow conservation equations (27) and the second from
the definition of tp+1. However α(t, p+ 1) ≥ st−1 + Yt,t+p−1 and the claim follows.

Observe that the inequality (39) is dominated by st−1 + Yt,tp ≥ dt,tp if t+ p ≥ tp.

4 Numerical results

We now present the results of some computational experiments carried out to compare the effec-
tiveness of the various mixed-integer programming formulations discussed in sections 2 and 3 in
solving the problem under study.

4.1 Problem instance generation

We randomly generated instances of the problem using a procedure adapted from that described
in [9] for the multi-item DLSP with a single machine. More precisely, the various instances tested
differ with respect to the following characteristics:
- Problem dimension: The problem dimension is represented by the number of items I, the number
of periods T and the number of machines K. We define 4 sets of instances:

- set A (small instances): I = 10, T = 50,K = 2
- set B (instances with a large number of periods): I = 10, T = 150,K = 2
- set C (instances with a large number of items): I = 25, T = 50,K = 2
- set D (instances with a large number of machines): I = 10, T = 50,K = 10

- Costs: For each item, inventory holding costs (resp. startup costs) have been randomly gener-
ated from a discrete uniform DU(5, 10) distribution (resp. from a discrete uniform DU(100, 200)
distribution).
- Production capacity utilization: Production capacity utilization ρ is defined as the ratio between
the total cumulated demand (

∑N
i=1 d

i
1T ) and the total cumulated available capacity (K × T ). ρ

was varied between 0.75 and 0.95, in steps of 0.05.
- Demand pattern: Integer demands dit ∈ {1, ...K} for each item have been randomly generated
according to the following procedure:

6



1. We randomly select an item i∗ from a discrete uniform DU(1, N) distribution and gen-
erate a value di

∗

T from a discrete uniform DU(1,K) distribution.
2. For each item i, except item i∗, we randomly select a period ti from a discrete uniform
DU(1, T ) distribution and generate a value diti from a discrete uniform DU(1,K) distribu-
tion.
3. For each entry in a N × T matrix, except for the entries corresponding to the (i, t) com-
binations for which we set dit > 0 in steps 1 or 2, we randomly generate a number αit from
a discrete uniform DU(1, NT ) distribution.

4. While the total cumulated demand (
∑N
i=1 d

i
1T ) does not exceed ρKT , we consider the

entries (i, t) one by one in the increasing order of the corresponding value αit and generate
a value dit from a discrete uniform DU(1,K) distribution.
5. When the total cumulated demand reaches ρKT , we examine whether the corresponding
instance is feasible by checking that

∑N
i=1 d

i
1t ≤ Kt for all t. If the instance is infeasible, we

repeat steps 1 to 4.

For each possible combination of problem dimension and production capacity utilization, 5 in-
stances were generated, resulting in a total of 4× 5× 5 = 100 instances.

4.2 Computational experiments

All tests were run on a Pentium 4 (2.8 Ghz) with 505 Mb of RAM, running under Windows XP.
We used a standard MILP software (CPLEX 11.1) with the solver default settings to solve the
problems with one of the following formulations:
- AGG: Aggregate formulation (9)-(15).
- AGG1: Aggregate formulation (9)-(15) strengthened by the valid inequalities proposed in [10]
for each item. These valid inequalities are added to the formulation at the root node of the Branch
& Bound tree. The corresponding cutting-plane generation algorithm is based on the heuristic
separation routine described by the authors of [10].
- AGG2: Aggregate formulation (9)-(15) strengthened by the valid inequalities (39) proposed in
section 3 for each item. These valid inequalities are added to the formulation at the root node of
the Branch & Bound tree using a standard cutting-plane generation procedure.
- AGG12: Aggregate formulation (9)-(15) first strengthened by the valid inequalities (39) proposed
in section 3 and then by the valid inequalities proposed in [10].
- EXT: Extended formulation proposed by Eppen and Martin in [4] for each item. We use the
barrier algorithm embedded in CPLEX to solve the initial linear relaxation of the problem.
- APP0.5: Approximate extended formulation (31)-(38) with ∆i = 0.5di,1,T . We use the barrier
algorithm embedded in CPLEX to solve the initial linear relaxation of the problem.

Tables 1 to 4 display the computational results. For each set of 25 instances and each formulation,
we provide:
-Var. and Const.: the number of variables and constraints.
- #VI1 (resp. #VI2 ): the average number of valid inequalities from the family proposed in [10]
(resp. proposed in section 3 of the present paper) added to the formulation by the cutting-plane
generation procedure.
- #Feas (resp. #Opt): the number of instances out of the corresponding 25 instances for which
a feasible solution (resp. a guaranteed optimal solution) could be found within 30 minutes of
computation.
- Gap0: the integrality gap, i.e. the relative difference between the lower bound provided by the
linear relaxation of the problem and the value of an optimal solution. For formulations AGG1,
AGG2 and AGG12, we consider the lower bound obtained after the cutting-plane generation
procedure has stopped.
- #Nodes: the average number of nodes explored by the Branch & Bound procedure before a
guaranteed optimal solution is found or the computation time limit is reached.
- CPUIP : the average computation time in seconds required to find a guaranteed optimal solution.
If one could not be found, we use the computation time limit of 1800 seconds.

7



- Gap: the average relative gap value obtained after 30 minutes of computation between the best
integer solution and the best lower bound found.

4.3 Comparison of formulations AGG1, AGG2 and AGG12

We first discuss the results obtained with formulations AGG1 and AGG2 (see Tables 1-4). These
results show that the proposed valid inequalities (39) are more efficient at strengthening the
aggregate formulation than the ones previously proposed in [10]. Namely, as can be seen e.g. for
set A instances:
- the reduction of the initial integrality gap (Gap0) is greater with formulation AGG2 than with
formulation AGG1 (2% vs 13%).
- the number of cutting-planes generated at the root node of the Branch & Bound tree is lower
with formulation AGG2 than with formulation AGG1 (1951 vs 8463).
- the average computation time is significantly lower with formulation AGG2 than with formulation
AGG1 (17s vs 594s).
Moreover, results from Tables 1 to 3 also suggest that, in general, combining both families of
valid inequalities (formulation AGG12) does not lead to shorter computation times. A noticeable
exception can be found for the case where a large number of resources is involved (see Table 4).
Specifically for set D instances, the average computation time is reduced from 711s to 636s by
using AGG12.

4.4 Comparison of formulations AGG2, EXT and APP0.5

We now compare the strengthened aggregate formulation AGG2 with the extended formulation
EXT. Results from Table 1 show that formulation EXT is more efficient than formulation AGG2
at solving small instances. Namely, the average computation time is reduced from 17s with
formulation AGG2 to 6s with formulation EXT for set A instances.

However, formulation AGG2 is more efficient at solving large instances (see Tables 2-4). Indeed,
the number of instances for which a feasible solution could be found within the computation time
limit is higher with formulation AGG2 than with formulation EXT (75 vs 56 instances). This can
be explained by the fact that, even if formulation EXT provides lower bounds of good quality,
its size significantly increases with the problem dimensions, especially with the number of periods
and/or resources. As a consequence, solving its linear relaxation is computationally demanding
and only a limited number of nodes can be explored before the time limit is reached.

Moreover, the use of the approximate formulation APP0.5 does not improve the results ob-
tained with formulation EXT with respect to the number of instances for which a feasible solution
could be found within the computation time limit. This may be explained by the fact that aggre-
gating part of the nodes and arcs in the corresponding network leads to a reduction in the size of
the formulation but also to a decrease in the quality of the lower bounds provided by the linear
relaxation of the problem. This is due to the fact that equalities Zt =

∑
α,γ(γ − β)+u(t, α, β, γ)

used in the extended formulation proposed by [4] to evaluate startup costs have to be replaced by
the weaker inequalities (35)-(36) in the approximate extended formulation.

4.5 Mathematical programming-based heuristic

Finally, we devised a simple heuristic as a first attempt to combine the advantages of formulations
EXT and AGG2, namely the quality of the lower bound provided by EXT and the quality of the
feasible solutions found by AGG2. More precisely, we implemented the following procedure:

1. We solve the linear relaxation of the problem using extended formulation EXT or ap-
proximate extended formulation APP0.5.
2. We look for the variables Yit with an integer non-negative value in the optimal continuous
solution and fix them to this value.
3. We solve the resulting problem using formulation AGG2.

8



Var. Const. VI1 VI2 Feas/Opt Gap0(%) Nodes CPUIP(s) Gap(%)
AGG 1550 2050 25/0 45 4.5e6 1800 14
AGG1 1550 2050 8463 25/22 13 6981 594 0.4
AGG2 1550 2050 1951 25/25 2 25 17 0
AGG12 1550 2050 4130 1951 25/25 1.6 118 49 0
EXT 16449 7666 25/25 0.3 1 6 0
APP0.5 13096 6574 25/25 1 5 15 0

Table 1: Results for set A instances: I = 10, T = 50,K = 2

Var. Const. VI1 VI2 Feas/Opt Gap0(%) Nodes CPUIP(s) Gap(%)
AGG1∗ 4650 6150
AGG2 4650 6150 17546 25/5 3 1287 1541 2.2
AGG12∗ 4650 6150
EXT 155790 59014 16/10 1.5 20 1491 0.5
APP0.5 129812 50501 16/10 2 10 1353 0.6
∗ Formulations AGG1 and AGG12 could not be solved due to exceeded memory capacity limitations.

Table 2: Results for set B instances: I = 10, T = 150,K = 2

Table 5 show the computational results obtained with this heuristic for the instances of sets B and
D. We display:
- Formulation: the formulation (EXT or APP0.5) used to solve the initial linear relaxation.
- NVfix : the average number of variables Yit fixed at step 2 of the heuristic.
- #Feas: the number of instances out of the corresponding 25 instances for which a feasible solution
could be found within the computation time limit of 600s.
- CPUtot: the average total computation time in seconds before the heuristic stops or before the
computation time limit is reached.
- Gapheur: the average relative gap between the lower bound provided by the linear relaxation of
formulation EXT or APP0.5 and the best integer solution found.

Results from table 5 show that we are able to obtain with the proposed heuristic better integer
solutions within a shorter computation time for set B instances. Namely, the average gap after
10 minutes of computation (Gapheur=1.1%) is smaller than the gap obtained with formulation
AGG2 after 30 minutes of computation (Gap=2.2%). However, no improvement was obtained for
set D instances.

Finally we observe that the inequalities and reformulations presented above can be used to treat
problems with sequence-dependent changeover costs in which constraints (11)-(15) are replaced
by (22)-(26).

References

[1] G. Belvaux, L.A. Wolsey, Modelling practical lot-sizing problems as mixed-integer programs,
Management Science 47, 993-1007 (2001).

Var. Const. VI1 VI2 Feas/Opt Gap0(%) Nodes CPUIP(s) Gap(%)
AGG1 3850 5200 15159 25/14 7 3360 817 0.8
AGG2 3850 5200 2070 25/25 0.7 128 17 0
AGG12 3850 5200 6432 2070 25/25 0.5 159 77 0
EXT 16777 11233 25/25 0.3 8 17 0
APP0.5 12822 9327 25/25 7 37 28 0

Table 3: Results for set C instances: I = 25, T = 50,K = 2

9



Var. Const. VI1 VI2 Feas/Opt Gap0(%) Nodes CPUIP(s) Gap(%)
AGG1 1550 2050 5937 25/14 5 25246 777 0.3
AGG2 1550 2050 814 25/18 6 97293 711 0.3
AGG12 1550 2050 4923 814 25/19 4 13266 636 0.2
EXT 831214 96775 15/12 1 5 1185 1
APP0.5 619493 68242 13/11 1 3 1240 0.5

Table 4: Results for set D instances: I = 10, T = 50,K = 10

Formulation NVfix Feas CPUtot(s) Gapheur(%)
set B EXT 159 25 298 1.1
set D APP0.5 235 14 687 0.5

Table 5: Results obtained with the heuristic for sets B and D instances

[2] M. Constantino, A polyhedral approach to production planning models: startup costs and
times and lower bounds on production. PhD thesis (1995), Université catholique de Louvain,
Belgique.

[3] A. Drexl, A. Kimms, Lot sizing and scheduling - Survey and extensions, European Journal of
Operational Research 9, 221-235 (1997).

[4] G.D Eppen, R.K. Martin, Solving multi-item capacitated lot-sizing problems using variable
redefinition, Operations Research 35, 832-848 (1987).

[5] C. Gicquel, M. Minoux, Y. Dallery, A tight MIP formulation for the discrete lot sizing and
scheduling problem with parallel resources, International Conference on Computers and In-
dustrial Engineering, Université Technologique de Troyes, Troyes, France, 2009.

[6] R. Jans, Z. Degraeve, Meta-heuristics for dynamic lot sizing: a review and comparison of
solution approaches, European Journal of Operational Research 177, 1855-1875 (2007).

[7] L.S. Lasdon, Optimization theory for large systems, Macmillan, New York, 1970.

[8] L.S. Lasdon, R.C. Terjung, An efficient algorithm for multi-item scheduling, Operations Re-
search 19, 946-969 (1971).

[9] M. Salomon, M. Solomon, L.N. van Wassenhove, Y. Dumas, S. Dauzère-Peres, Solving the dis-
crete lotsizing and scheduling problem with sequence dependent set-up costs and set-up times
using the travelling salesman problem with time windows, European Journal of Operational
Research 100, 494-513 (1997).

[10] F. Vanderbeck and L.A. Wolsey, Valid inequalities for the Lasdon-Terjung production model,
Journal of the Operational Research Society 43, 435-441 (1992) .

[11] C.A. van Eijl, C.P.M. van Hoesel, On the discrete lot-sizing and scheduling problem with
Wagner-Whitin costs, Operations Research Letters 20, 7-13 (1997).

[12] S. Van Hoesel, A. Kolen, A linear description of the discrete lot-sizing and scheduling problem,
European Journal of Operational Research 75, 342-353 (1994).

10


