ON CONVEX OPTIMIZATION WITHOUT CONVEX REPRESENTATION

JB. LASSERRE

ABSTRACT. We consider the convex optimization problem $\mathbf{P} : \min_{\mathbf{x}} \{f(\mathbf{x}) : \mathbf{x} \in \mathbf{K}\}$ where f is convex continuously differentiable, and $\mathbf{K} \subset \mathbb{R}^n$ is a compact convex set with representation $\{\mathbf{x} \in \mathbb{R}^n : g_j(\mathbf{x}) \ge 0, j = 1, \ldots, m\}$ for some continuously differentiable functions (g_j) . We discuss the case where the g_j 's are not all concave (in contrast with convex programming where they all are). In particular, even if the g_j are not concave, we consider the log-barrier function ϕ_{μ} with parameter μ , associated with \mathbf{P} , usually defined for concave functions (g_j) . We then show that any limit point of any sequence $(\mathbf{x}_{\mu}) \subset \mathbf{K}$ of stationary points of $\phi_{\mu}, \mu \to 0$, is a Karush-Kuhn-Tucker point of problem \mathbf{P} and a global minimizer of f on \mathbf{K} .

1. INTRODUCTION

Consider the optimization problem

(1.1)
$$\mathbf{P}: \quad f^* := \min_{\mathbf{x}} \{ f(\mathbf{x}) : \mathbf{x} \in \mathbf{K} \}.$$

for some convex and continuously differentiable function $f : \mathbb{R}^n \to \mathbb{R}$, and where the feasible set $\mathbf{K} \subset \mathbb{R}^n$ is defined by:

(1.2)
$$\mathbf{K} := \{ \mathbf{x} \in \mathbb{R}^n : g_j(\mathbf{x}) \ge 0, \quad j = 1, \dots, m \},\$$

for some continuously differentiable functions $g_j : \mathbb{R}^n \to \mathbb{R}$. We say that (g_j) , $j = 1, \ldots, m$, is a *representation* of **K**. When **K** is convex and the (g_j) are concave we say that **K** has a convex representation.

In the literature, when **K** is convex **P** is referred to as a convex optimization problem and in particular, every local minimum of f is a global minimum. However, if on the one hand convex optimization usually refers to minimizing a convex function on a convex set **K** without precising its representation (g_j) (see e.g. Ben-Tal and Nemirovsky [1, Definition 5.1.1] or Bertsekas et al. [3, Chapter 2]), on the other hand convex programming usually refers to the situation where the representation of **K** is also convex, i.e. when all the g_j 's are concave. See for instance Ben-Tal and Nemirovski [1, p. 335], Berkovitz [2, p. 179], Boyd and Vandenberghe [4, p. 7], Bertsekas et al. [3, §3.5.5], Nesterov and Nemirovski [13, p. 217-218], and Hiriart-Urruty [11]. Convex programming is particularly interesting because under Slater's condition¹, the standard Karush-Kuhn-Tucker (KKT) optimality conditions are not only necessary but also sufficient and in addition, the concavity property of the g_j 's is used to prove convergence (and rates of convergence) of specialized algorithms.

¹⁹⁹¹ Mathematics Subject Classification. 90C25 90C46 65K05.

Key words and phrases. Convex optimization; convex programming; log-barrier.

¹Slater's condition holds if $g_j(\mathbf{x}_0) > 0$ for some $\mathbf{x}_0 \in \mathbf{K}$ and all $j = 1, \ldots, m$.

JB. LASSERRE

To the best of our knowledge, little is said in the literature for the specific case where **K** is convex but not necessarily its representation, that is, when the functions (g_j) are not necessarily concave. It looks like outside the convex programming framework, all problems are treated the same. This paper is a companion paper to [12] where we proved that if the nondegeneracy condition

(1.3)
$$\forall j = 1, \dots, m: \quad \nabla g_j(\mathbf{x}) \neq 0 \quad \forall \mathbf{x} \in \mathbf{K} \text{ with } g_j(\mathbf{x}) = 0$$

holds, then $\mathbf{x} \in \mathbf{K}$ is a global minimizer of f on \mathbf{K} if and only if (\mathbf{x}, λ) is a KKT point for some $\lambda \in \mathbb{R}^m_+$. This indicates that for convex optimization problems (1.1), and from the point of view of "first-order optimality conditions", what really matters is the geometry of \mathbf{K} rather than its representation. Indeed, for *any* representation (g_j) of \mathbf{K} that satisfies the nondegeneracy condition (1.3), there is a one-to-one correspondence between global minimizers and KKT points.

But what about from a computational viewpoint? Of course, not all representations of **K** are equivalent since the ability (as well as the efficiency) of algorithms to obtain a KKT point of **P** will strongly depend on the representation (g_j) of **K** which is used. For example, algorithms that implement Lagrangian duality would require the (g_j) to be concave, those based on second-order methods would require all functions f and (g_j) to be twice continuous differentiable, self-concordance of a barrier function associated with a representation of **K** may or may not hold, etc.

When **K** is convex but not its representation (g_j) , several situations may occur. In particular, the level set $\{\mathbf{x} : g_j(\mathbf{x}) \ge a_j\}$ may be convex for $a_j = 0$ but not for some other values of $a_j > 0$, in which case the g_j 's are not even quasiconcave on **K**, i.e., one may say that **K** is convex by accident for the value $\mathbf{a} = 0$ of the parameter $\mathbf{a} \ge 0$. One might think that in this situation, algorithms that generate a sequence of feasible points in the interior of **K** could run into problems to find a local minimum of f. If the $-g_j$'s are all quasiconvex on **K**, we say that we are in the generic convex case because not only **K** but also all sets $\mathbf{K}_{\mathbf{a}} := \{\mathbf{x} : g_j(\mathbf{x}) \ge \mathbf{a}_j, j = 1, \dots, m\}$ are convex. However, quasiconvex functions do not share some nice properties of the convex functions. In particular, (a) $\nabla g_j(\mathbf{x}) = 0$ does not imply that g_j reaches a local minimum at \mathbf{x} , (b) a local minimum is not necessarily global and (c), the sum of quasiconvex functions is not quasiconvex in general; see e.g. Crouzeix et al. [5, p. 65]. And so even in this case, for some minimization algorithms, convergence to a minimum of f on **K** might be problematic.

So an interesting issue is to determine whether there is an algorithm which converges to a global minimizer of a convex function f on \mathbf{K} , no matter if the representation of \mathbf{K} is convex or not. Of course, in view of [12, Theorem 2.3], a sufficient condition is that this algorithm provides a sequence (or subsequence) of points $(\mathbf{x}_k, \lambda_k) \in \mathbb{R}^n \times \mathbb{R}^m_+$ converging to a KKT point of \mathbf{P} .

With **P** and a parameter $\mu > 0$, we associate the *log-barrier* function $\phi_{\mu} : \mathbf{K} \to \mathbb{R} \cup \{+\infty\}$ defined by

(1.4)
$$\mathbf{x} \mapsto \phi_{\mu}(\mathbf{x}) := \begin{cases} f(\mathbf{x}) - \mu \sum_{j=1}^{m} \ln g_j(\mathbf{x}), & \text{if } g_j(\mathbf{x}) > 0, \forall j = 1, \dots, m \\ +\infty, & \text{otherwise.} \end{cases}$$

By a stationary point $\mathbf{x} \in \mathbf{K}$ of ϕ_{μ} , we mean a point $\mathbf{x} \in \mathbf{K}$ with $g_i(\mathbf{x}) \neq 0$ for all $j = 1, \ldots, m$, and such that $\nabla \phi_{\mu}(\mathbf{x}) = 0$. Notice that in general and in contrast with the present paper, ϕ_{μ} (or more precisely $\psi_{\mu} := \mu \phi_{\mu}$) is usually defined for convex problems **P** where all the g_j 's are concave; see e.g. Den Hertog [6] and for more details on the barrier functions and their properties, the interested reader is referred to Güler [9] and Güler and Tuncel [10].

Contribution. The purpose of this paper is to show that no matter which representation (g_i) of a convex set K (assumed to be compact) is used (provided it satisfies the nondegeneracy condition (1.3), any sequence of stationary points (\mathbf{x}_{μ}) of $\phi_{\mu}, \mu \to 0$, has the nice property that each of its accumulation points is a KKT point of \mathbf{P} and hence, a global minimizer of f on \mathbf{K} . Hence, to obtain the global minimum of a convex function on \mathbf{K} it is enough to minimize the logbarrier function for nonincreasing values of the parameter, for any representation of K that satisfies the nondegeneracy condition (1.3). Again and of course, the efficiency of the method will crucially depend on the representation of \mathbf{K} which is used. For instance, in general ϕ_{μ} will not have the self-concordance property, crucial for efficiency.

Observe that at first glance this result is a little surprising because as we already mentioned, there are examples of sets $\mathbf{K}_{\mathbf{a}} := \{\mathbf{x} : g_j(\mathbf{x}) \ge a_j, j = 1, \dots, m\}$ which are non convex for every $0 \neq \mathbf{a} \geq 0$ but $\mathbf{K} := \mathbf{K}_0$ is convex (by accident!) and (1.3) holds. So inside K the level sets of the g_j 's are not convex any more. Still, and even though the stationary points \mathbf{x}_{μ} of the associated log-barrier ϕ_{μ} are inside **K**, all converging subsequences of a sequence $(\mathbf{x}_{\mu}), \mu \to 0$, will converge to some global minimizer \mathbf{x}^* of f on **K**. In particular, if the global minimizer $\mathbf{x}^* \in \mathbf{K}$ is unique then the whole sequence (\mathbf{x}_{μ}) will converge. Notice that this happens even if the g_j 's are not log-concave, in which case ϕ_μ may not be convex for all μ (e.g. if f is linear). So what seems to really matter is the fact that as μ decreases, the convex function f becomes more and more important in ϕ_{μ} , and also that the functions g_i which matter in a KKT point (\mathbf{x}^*, λ) are those for which $g_i(\mathbf{x}^*) = 0$ (and so with convex associated level set $\{\mathbf{x} : g_i(\mathbf{x}) \geq 0\}$.

2. Main result

Consider the optimization problem (1.1) in the following context.

Assumption 1. The set K in (1.2) is convex and Slater's assumption holds. Morover, the nondegeneracy condition

(2.1)
$$\nabla g_j(\mathbf{x}) \neq 0 \quad \forall \mathbf{x} \in \mathbf{K} \text{ such that } g_j(\mathbf{x}) = 0,$$

holds for every $j = 1, \ldots, m$.

Observe that when the g_i 's are concave then the nondegeneracy condition (2.1) holds automatically. Recall that $(\mathbf{x}^*, \lambda) \in \mathbf{K} \times \mathbb{R}^m$ is a Karush-Kuhn-Tucker (KKT) point of **P** if

- $\mathbf{x} \in \mathbf{K}$ and $\lambda \geq 0$
- $\lambda_j g_j(\mathbf{x}^*) = 0$ for every $j = 1, \dots, m$ $\nabla f(\mathbf{x}^*) \sum_{j=1}^m \lambda_j \nabla g_j(\mathbf{x}^*) = 0.$

We recall the following result from [12]:

JB. LASSERRE

Theorem 1 ([12]). Let **K** be as in (1.2) and let Assumption 1 hold. Then **x** is a global minimizer of f on **K** if and only if there is some $\lambda \in \mathbb{R}^m_+$ such that (\mathbf{x}, λ) is a KKT point of **P**.

The next result is concerned with the log-barrier ϕ_{μ} in (1.4).

Lemma 2. Let **K** in (1.2) be convex and compact and assume that Slater's condition holds. Then for every $\mu > 0$ the log-barrier function ϕ_{μ} in (1.4) has at least one stationary point on **K** (which is a global minimizer of ϕ_{μ} on **K**).

Proof. Let f^* be the minimum of f on \mathbf{K} and let $\mu > 0$ be fixed, arbitrary. We first show that $\phi_{\mu}(\mathbf{x}_k) \to \infty$ as $\mathbf{x}_k \to \partial \mathbf{K}$ (where $(\mathbf{x}_k) \subset \mathbf{K}$). Indeed, pick up an index i such that $g_i(\mathbf{x}_k) \to 0$ as $k \to \infty$. Then $\phi_{\mu}(\mathbf{x}_k) \ge f^* - \mu \ln g_i(\mathbf{x}_k) - (m-1) \ln C$ (where all the g_j 's are bounded above by C). So ϕ_{μ} is coercive and therefore must have a (global) minimizer $\mathbf{x}_{\mu} \in \mathbf{K}$ with $g_j(\mathbf{x}_{\mu}) > 0$ for every $j = 1, \ldots, m$; and so $\nabla \phi_{\mu}(\mathbf{x}_{\mu}) = 0$.

Notice that ϕ_{μ} may have several stationary points in **K**. We now state our main result.

Theorem 3. Let **K** in (1.2) be compact and let Assumption 1 hold true. For every fixed $\mu > 0$, choose $\mathbf{x}_{\mu} \in \mathbf{K}$ to be an arbitrary stationary point of ϕ_{μ} in **K**.

Then every accumulation point $\mathbf{x}^* \in \mathbf{K}$ of such a sequence $(\mathbf{x}_{\mu}) \subset \mathbf{K}$ with $\mu \to 0$, is a global minimizer of f on \mathbf{K} , and if $\nabla f(\mathbf{x}^*) \neq 0$, \mathbf{x}^* is a KKT point of \mathbf{P} .

Proof. Let $\mathbf{x}_{\mu} \in \mathbf{K}$ be a stationary point of ϕ_{μ} , which by Lemma 2 is guaranteed to exist. So

(2.2)
$$\nabla \phi_{\mu}(\mathbf{x}_{\mu}) = \nabla f(\mathbf{x}_{\mu}) - \sum_{j=1}^{m} \frac{\mu}{g_j(\mathbf{x}_{\mu})} \nabla g_j(\mathbf{x}_{\mu}) = 0.$$

As $\mu \to 0$ and **K** is compact, there exists $\mathbf{x}^* \in \mathbf{K}$ and a subsequence $(\mu_\ell) \subset \mathbb{R}_+$ such that $\mathbf{x}_{\mu_\ell} \to \mathbf{x}^*$ as $\ell \to \infty$. We need consider two cases:

Case when $g_j(\mathbf{x}^*) > 0$, $\forall j = 1, ..., m$. Then as f and g_j are continuously differentiable, j = 1, ..., m, taking limit in (2.2) for the subsequence (μ_ℓ) , yields $\nabla f(\mathbf{x}^*) = 0$ which, as f is convex, implies that \mathbf{x}^* is a global minimizer of f on \mathbb{R}^n , hence on \mathbf{K} .

Case when $g_j(\mathbf{x}^*) = 0$ for some $j \in \{1, ..., m\}$. Let $J := \{j : g_j(\mathbf{x}^*) = 0\} \neq \emptyset$. We next show that for every $j \in J$, the sequence of ratios $(\mu/g_j(\mathbf{x}_{\mu_\ell}), \ell = 1, ..., n)$ is bounded. Indeed let $j \in J$ be fixed arbitrary. As Slater's condition holds, let $\mathbf{x}_0 \in \mathbf{K}$ be such that $g_j(\mathbf{x}_0) > 0$ for all j = 1, ..., m; then $\langle \nabla g_j(\mathbf{x}^*), \mathbf{x}_0 - \mathbf{x}^* \rangle > 0$. Indeed, as \mathbf{K} is convex, $\langle \nabla g_j(\mathbf{x}^*), \mathbf{x}_0 + \mathbf{v} - \mathbf{x}^* \rangle \ge 0$ for all \mathbf{v} in some small enough ball $\mathbf{B}(0, \rho)$ around the origin. So if $\langle \nabla g_j(\mathbf{x}^*), \mathbf{x}_0 - \mathbf{x}^* \rangle = 0$ then $\langle \nabla g_j(\mathbf{x}^*), \mathbf{v} \rangle \ge 0$ for all $\mathbf{v} \in \mathbf{B}(0, \rho)$, in contradiction with $\nabla g_j(\mathbf{x}^*) \neq 0$. Next,

(2.3)
$$\langle \nabla f(\mathbf{x}_{\mu_{\ell}}), \mathbf{x}_{0} - \mathbf{x}^{*} \rangle = \underbrace{\sum_{k \notin J}^{m} \frac{\mu_{\ell}}{g_{k}(\mathbf{x}_{\mu_{\ell}})} \langle \nabla g_{k}(\mathbf{x}_{\mu_{\ell}}), \mathbf{x}_{0} - \mathbf{x}^{*} \rangle}_{A_{\ell}} + \underbrace{\sum_{k \in J}^{m} \frac{\mu_{\ell}}{g_{k}(\mathbf{x}_{\mu_{\ell}})} \langle \nabla g_{k}(\mathbf{x}_{\mu_{\ell}}), \mathbf{x}_{0} - \mathbf{x}^{*} \rangle}_{B_{\ell}}$$

4

Observe that in (2.3):

- Every term of the sum B_{ℓ} is nonnegative for sufficiently large ℓ , say $\ell \geq \ell_0$, because $\mathbf{x}_{\mu_{\ell}} \to \mathbf{x}^*$ and $\langle \nabla g_k(\mathbf{x}^*), \mathbf{x}_0 \mathbf{x}^* \rangle > 0$ for all $k \in J$.
- $A_{\ell} \to 0$ as $\ell \to \infty$ because $\mu_{\ell} \to 0$ and $g_k(\mathbf{x}_{\mu_{\ell}}) \to g_k(\mathbf{x}^*) > 0$ for all $k \notin J$.

Therefore $|A_{\ell}| \leq A$ for all sufficiently large ℓ , say $\ell \geq \ell_1$, and so for every $j \in J$:

$$\langle \nabla f(\mathbf{x}_{\mu_{\ell}}), \mathbf{x}_{0} - \mathbf{x}^{*} \rangle + A \ge \frac{\mu_{\ell}}{g_{j}(\mathbf{x}_{\mu_{\ell}})} \langle \nabla g_{j}(\mathbf{x}_{\mu_{\ell}}), \mathbf{x}_{0} - \mathbf{x}^{*} \rangle, \quad \ell \ge \ell_{2} := \max[\ell_{0}, \ell_{1}],$$

which shows that for every $j \in J$, the nonnegative sequence $(\mu_{\ell}/g_j(\mathbf{x}_{\mu_{\ell}})), \ell \geq \ell_2$, is bounded from above.

So take a subsequence (still denoted $(\mu_{\ell}), \ell \in \mathbb{N}$, for convenience) such that the ratios $\mu_{\ell}/g_j(\mathbf{x}_{\mu_{\ell}})$ converge for all $j \in J$, that is,

$$\lim_{\ell \to \infty} \frac{\mu_{\ell}}{g_j(\mathbf{x}_{\mu_{\ell}})} = \lambda_j \ge 0, \qquad \forall j \in J,$$

and let $\lambda_j := 0$ for every $j \notin J$, so that $\lambda_j g_j(\mathbf{x}^*) = 0$ for every $j = 1, \ldots, m$. Taking limit in (2.2) as $\ell \to \infty$, yields:

(2.4)
$$\nabla f(\mathbf{x}^*) = \sum_{j=1}^m \lambda_j \, \nabla g_j(\mathbf{x}^*),$$

which shows that $(\mathbf{x}^*, \lambda) \in \mathbf{K} \times \mathbb{R}^m_+$ is a KKT point for **P**. Finally, invoking Theorem 1, \mathbf{x}^* is also a global minimizer of **P**.

2.1. **Discussion.** The log-barrier function ϕ_{μ} or its exponential variant $f + \mu \sum g_j^{-1}$ has become popular since the pioneer work of Fiacco and McCormick [7, 8], where it is assumed that f and the g_j 's are twice continuously differentiable, the g_j 's are concave², Slater's condition holds, the set $\mathbf{K} \cap \{\mathbf{x} : f(\mathbf{x}) \leq k\}$ is bounded for every finite k, and finally, the barrier function is strictly convex for every value of the parameter $\mu > 0$. Under such conditions, the barrier function $f + \mu \sum g_j^{-1}$ has a unique minimizer \mathbf{x}_{μ} for every $\mu > 0$ and the sequence $(\mathbf{x}_{\mu}, (\mu/g_j(\mathbf{x}_{\mu})^2) \subset \mathbb{R}^{n+m}$ converges to a Wolfe-dual feasible point.

In contrast, Theorem 3 states that without assuming concavity of the g_j 's, one may obtain a global minimizer of f on \mathbf{K} , by looking at any limit point of any sequence of stationary points $(\mathbf{x}_{\mu}), \mu \to 0$, of the log-barrier function ϕ_{μ} associated with a representation (g_j) of \mathbf{K} , provided that the representation satisfies the nondegeneracy condition (1.3). To us, this comes as a little surprise as the stationary points (\mathbf{x}_{μ}) are all inside \mathbf{K} , and there are examples of convex sets \mathbf{K} with a representation (g_j) satisfying (1.3) and such that the level sets $\mathbf{K}_{\mathbf{a}} = \{\mathbf{x} : g_j(\mathbf{x}) \ge a_j\}$ with $a_j > 0$, are not convex! (See Example 1.) Even if f is convex, the log-barrier function ϕ_{μ} need not be convex; for instance if f is linear, $\nabla^2 \phi_{\mu} = -\mu \sum_j \nabla^2 \ln g_j$, and so if the g_j 's are not log-concave then ϕ_{μ} may not be convex on \mathbf{K} for every value of the parameter $\mu > 0$.

Example 1. Let n = 2 and $\mathbf{K}_a := {\mathbf{x} \in \mathbb{R}^2 : g(\mathbf{x}) \ge a}$ with $\mathbf{x} \mapsto g(\mathbf{x}) := 4 - ((x_1 + 1)^2 + x_2^2)((x_1 - 1)^2 + x_2^2)$, with $a \in \mathbb{R}$. The set \mathbf{K}_a is convex only for those values of a with $a \le 0$; see in Figure 1. It is even disconnected for a = 4.

²In fact as noted in [7], concavity of the g_j 's is merely a sufficient condition for the barrier function to be convex.

JB. LASSERRE

FIGURE 1. Example 1: Level sets $\{\mathbf{x} : g(\mathbf{x}) = a\}$ for a = 2.95, 2.5, 1.5, 0 and -2

We might want to consider a generic situation, that is, when the set

 $\mathbf{K}_{\mathbf{a}} := \{ \mathbf{x} \in \mathbb{R}^n : g_j(\mathbf{x}) \ge a_j, \quad j = 1, \dots, m \},\$

is also convex for every positive vector $0 \leq \mathbf{a} = (a_j) \in \mathbb{R}^m$. This in turn would imply that the g_j are quasiconcave³ on \mathbf{K} . In particular, if the nondegeneracy condition (1.3) holds on \mathbf{K} and the g_j 's are twice differentiable, then at most one eigenvalue of the Hessian $\nabla^2 g_j$ (and hence $\nabla^2 \ln g_j$) is possibly positive (i.e., $\ln g_j$ is almost concave). This is because for every $\mathbf{x} \in \mathbf{K}$ with $g_j(\mathbf{x}) = 0$, one has $\langle \mathbf{v}, \nabla^2 g_j(\mathbf{x}) \mathbf{v} \rangle \leq 0$ for all $\mathbf{v} \in \nabla g_j(\mathbf{x})^{\perp}$ (where $\nabla g_j(\mathbf{x})^{\perp} := \{\mathbf{v} : \langle \nabla g_j(\mathbf{x}), \mathbf{v} \rangle = 0\}$). However, even in this situation, the log-barrier function ϕ_{μ} may not be convex. On the other hand, $\ln g_j$ is "more" concave than g_j on Int \mathbf{K} because its Hessian $\nabla^2 g_j$ satisfies $g_j^2 \nabla^2 \ln g_j = g_j \nabla^2 g_j - \nabla g_j (\nabla g_j)^T$. But still, g_j might not be log-concave on Int \mathbf{K} , and so ϕ_{μ} may not be convex at least for values of μ not too small (and for all values of μ if f is linear).

Example 2. Let n = 2 and $\mathbf{K} := {\mathbf{x} : g(\mathbf{x}) \ge 0, \mathbf{x} \ge 0}$ with $\mathbf{x} \mapsto g(\mathbf{x}) = x_1x_2 - 1$. The representation of \mathbf{K} is not convex but the g_j 's are log-concave, and so the log-barrier $\mathbf{x} \mapsto \phi_{\mu}(\mathbf{x}) := f\mathbf{x}) - \mu(\ln g(\mathbf{x}) - \ln x_1 - \ln x_2)$ is convex.

Example 3. Let n = 2 and $\mathbf{K} := {\mathbf{x} : g_1(\mathbf{x}) \ge 0; a - x_1 \ge 0; 0 \le x_2 \le b}$ with $\mathbf{x} \mapsto g_1(\mathbf{x}) = x_1/(\epsilon + x_2^2)$ with $\epsilon > 0$. The representation of \mathbf{K} is not convex and g_1 is not log-concave. If f is linear and ϵ is small enough, the log-barrier

 $\mathbf{x} \mapsto \phi_{\mu}(\mathbf{x}) := f(\mathbf{x}) - \mu(\ln x_1 + \ln(a - x_1) - \ln(\epsilon + x_2^2) + \ln x_2 + \ln(b - x_2))$

³Recall that on a convex set $O \subset \mathbb{R}^n$, a function $f : O \to \mathbb{R}$ is quasiconvex if the level sets $\{\mathbf{x} : f(\mathbf{x}) \leq r\}$ are convex for every $r \in \mathbb{R}$. A function $f : O \to \mathbb{R}$ is said to be quasiconcave if -f is quasiconvex; see e.g. [5].

is not convex for every value of $\mu > 0$.

Acknowledgement. The author wishes to thank two anonymous referees for pointing out a mistake and providing suggestions to improve the initial version of this paper.

References

- [1] A. Ben-Tal, A. Nemirovski. Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications, SIAM, Philadelphia, 2001.
- [2] L.D. Berkovitz. Convexity and Optimization in \mathbb{R}^n , John Wiley & Sons, Inc., 2002.
- [3] D. Bertsekas, A. Nedić, E. Ozdaglar. Convex Analysis and Optimization, Athena Scientific, Belmont, Massachusetts, 2003.
- [4] S. Boyd, L. Vandenberghe. Convex Optimization, Cambridge University Press, Cambridge, 2004.
- [5] J-P. Crouzeix, A. Eberhard, D. Ralph. A geometrical insight on pseudoconvexity and pseudomonotonicity, *Math. Program. Ser. B* **123** (2010), 61–83.
- [6] D. den Hertog. Interior Point Approach to Linear, Quadratic and Convex Programming, Kluwer, Dordrecht, 1994.
- [7] A.V. Fiacco, G.P. McCormick. The sequential unconstrained minimization technique for nonlinear programming, a primal-dual method, Manag. Sci. 10 (1964), 360–366.
- [8] A.V. Fiacco, G.P. McCormick. Computational algorithm for the sequential unconstrained minimization technique for nonlinear programming, Manag. Sci. 10 (1964), 601–617.
- [9] O. Güler. Barrier functions in interior point methods, Math. Oper. Res. 21 (1996), 860-885
- [10] O. Güler, L. Tuncel. Characterization of the barrier parameter of homogeneous convex cones, Math. Progr. 81 (1998), 55–76.
- [11] J.-B. Hiriart-Urruty. Optimisation et Analyse Convexe, Presses Universitaires de France, 1998.
- [12] J.B. Lasserre. On representations of the feasible set in convex optimization, Optim. Letters 4 (2010), 1–7.
- [13] Y. Nesterov, A. Nemirovskii. Interior-Point Polynomial Algorithms in Convex Programming, SIAM, Philadelphia, 1994.
- [14] B.T. Polyak. Introduction to Optimization, Optimization Software, Inc., New York, 1987.
- [15] R. Schneider. Convex Bodies: The Brunn-Minkowski Theory, Cambridge University Press, Cambridge, UK (1994).

LAAS-CNRS and Institute of Mathematics, University of Toulouse, LAAS, 7 avenue du Colonel Roche, 31077 Toulouse Cédex 4, France

E-mail address: lasserre@laas.fr