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Every maximally monotone operator of
Fitzpatrick-Phelps type is actually of dense type
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Abstract

We show that every maximally monotone operator of Fitzpatrick-Phelps type defined
on a real Banach space must be of dense type. This provides an affirmative answer to a
question posed by Stephen Simons in 2001 and implies that various important notions
of monotonicity coincide.
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1 Introduction

Throughout this note, we assume that X is a real Banach space with norm || - ||, that X*
is the continuous dual of X, and that X and X* are paired by (-,-). Let A: X =% X* be
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a set-valued operator (also known as multifunction) from X to X*, i.e., for every x € X,
Ax C X*, and let gra A = {(a:, r)e X x X*|x* e Ax} denote the graph of A. The domain
of Ais dom A = {z € X | Av # @}, while ran A = A(X) is the range of A. Recall that A
is monotone if

(1) (x—y, a2 —y*) >0, V(r,z*)egraAV(y,y*) € gra i,

and maximally monotone if A is monotone and A admits no proper monotone extension. It
will be convenient to also say that gra A is monotone or maximally monotone respectively in
this case. We can then simply say that (z,2*) € X x X* is monotonically related to gra A
if {(z,2*)} Ugra A is monotone.

We now recall the three fundamental types of monotonicity.

Definition 1.1 Let A : X =% X* be maximally monotone. Then three key types of monotone
operators are defined as follows.

(i) A is of dense type or type (D) (1971, [11)]) if for every (x**,x*) € X** x X* with

inf (o —2x™ a"—2%) >0,
(a,a*)egra A
there exist a bounded net (aq, a’)aer in gra A such that (ay, al)aer weak™x strong con-
verges to (x™*, z*).

(ii) A is of type negative infimum (NI) (1996, [16]) if

sup  ((a,2") + (a*,2™) — (a,a”)) > (™, 2%), V(2™ z*) e X** x X"
(a,a*)egra A

(iii) A s of type Fitzpatrick-Phelps (FP) (1992, [10]) if whenever U is an open convex
subset of X* such that U Nran A #+ &, x* € U, and (z,x*) € X x X* is monotonically
related to gra AN (X x U) it must follow that (z,z*) € gra A.

All three of these properties are known to hold for the subgradient of a closed convex
function and for every maximally monotone operator on a reflexive space. These and other
relationships known amongst these and other monotonicity notions are described in [6, Chap-
ter 8]. Monotone operators are fundamental objects in modern Optimization and Variational
Analysis; see, e.g., [3 4], 5], the books [2 6, [7, 14] 17, 19, 15, 21] and the references therein.

In Theorem B.1] of this paper, we provide an affirmative to the following question, posed
by S. Simons [I8, Problem 18, page 406]:

Let A: X = X* be mazimally monotone such that A is of type (FP).
Is A necessarily of type (D)?



In consequence, in Corollary [3.21 we record that the three notions in Definition [Tl actually
coincide.

We shall utilize the following notation, in addition to standard notions from convex anal-
ysis: The open unit ball in X is Ux = {x € X | ||z|| <1}, and the closed unit ball is

{x eX | |z < 1}. It is very convenient to identify X with its canonical image in the
bidual space X**. Moreover, X x X* and (X x X*)* = X* x X** are paired via

((z,2%), (y", y™)) = (x,y") + (2", ™),

where (z,2*) € X x X* and (y*, y**) € X* x X**. We recall the following basic fact regarding
the second dual ball:

Fact 1.2 (Goldstine) (See [13| Theorem 2.6.26] or [8, Theorem 3.27].) The weak*-closure

The remainder of this paper is organized as follows. In Section 2 we record auxiliary

results for subsequent use. The main result (Theorem [B.I]) and the promised corollary
(Corollary B.2]) are provided in Section [3l

2 Preliminary monotonicity results

A now fundamental tool of modern monotone operator theory originated with Simon Fitz-
patrick in 1988. It is reprised next:

Fact 2.1 (Fitzpatrick) (See [9, Corollary 3.9].) Let A: X =% X* be mazimally monotone,
and let us set

(2)  Fa: X™ x X* = ]—o0,+00]: (z,2") = sup  ((¢™,d") + (a,2") — (a,a”)).
(a,a*)egra A

Then for every (z,z*) € X x X*, the inequality
(z,27) < Falx,27)

is true, and equality holds if and only if (x,x*) € gra A.
The function Fa|xxx+ is the classical Fitzpatrick function associated with A.

The first relevant relationship established for (FP) operators is due to Stephen Simons:

Fact 2.2 (Simons) (See [18, Theorem 17] or [19, Theorem 37.1].) Let A : X =2 X* be
mazimally monotone and of type (D). Then A is of type (FP).
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The most powerful current information is captured in the following result.

Fact 2.3 (Simons / Marques Alves and Svaiter) (See [16, Lemma 15] or [I9, Theo-
rem 36.3(a)|, and [12, Theorem 4.4].) Let A : X = X* be mazimally monotone. Then A is

of type (D) if and only if it is of type (NI).

The implication type (NI) implies type (D) — which we exploit — is very recently due to
Marques Alves and Svaiter [12].

3 Main result

The next theorem is our main result. In conjunction with the corollary that follows, it
provides the affirmative answer promised to Simons’s problem posed in [I8, Problem 18].

Theorem 3.1 Let A: X = X* be maximally monotone such that A is of type (FP). Then
A is of type (NI).

Proof. After translating the graph if necessary, we can and do suppose that (0,0) € gra A.
Let (z§*, xf) € X™ x X*. We must show that

(3) Falag®, x5) = (257, 25)

and we consider two cases.

Case 1: x§* € X.
Then (B) follows directly from Fact 21

Case 2: xj* € X N X,
By Fact [[2] there exists a bounded net (z,)qer in X that weak™® converges to a*. Thus, we
have

(4) M = sup ||za|| < +o0
acl

and

(5) (T, x5) = (27, 2p)-

Now we consider two subcases.

Subcase 2.1: There exists a € I, such that (x4, z) € gra A.
By definition,

FA(xa*a ZL’;) > <Ia>x8> + <x8*a ZL’;) - <x0m ZL’S> = <x8*a ZL’;)



Hence (B]) holds.
Subcase 2.2: We have

(6) (Ta,xy) ¢ gra A, Va e l.
Set
(7) U. = [0, 25] + eUx-~,

where £ > 0. Observe that U, is open and convex. Since (0,0) € gra A, we have, by definition
of U, 0 € ran ANU, and z € U.. In view of (@) and because A is of type (FP), there exists
a net (aqe,a;,.) in gra A such that a, . € U, and

(8) (Ao, 7o) + (Tas aZ,e) (T a:;,s> > (Ta,Tg), Vo€l
Now fix o € 1. By (8,

*

<aa,ea .758) + <JJ8*, CLZ’€> - <aa,€7 aa,e> > <J}8* — Lo aZ,e> + <$a, .758>
Hence,
(9) Fa(ag", xg) > (25" — Ta, a5.) + (Ta, 75)-

Since a}, . € U., there exist

(10) tae €[0,1] and b}, . € Ux-
such that
(11) U e = tacTy + €by, ..

Using (@), (II)), and @), we deduce that
Fy(xg™, 25) > (25" — Za, Loty + by, ) + (2o, 70)
= tac(Ty" = Ta, ) + (20" = Za, by o) + (Ta 75)
> tae{Ty" — Lo, 1g) — €llag” — 2ol + (Za, 25)
(12) > tae(2p” = Zay 25) — (257l + M) + (2a, 25)-

In view of (I0) and since a € I was chosen arbitrarily, we take the limit in (I2) and obtain
with the help of () that

(13) Fa(ag", 2p) 2 —e(|lag" || + M) + (5", 7o)

Next, letting ¢ — 0 in (I3), we have

(14) Fa(xg", xp) 2 (x5, 7).

Therefore, ([B]) holds in all cases. |

We now obtain the promised corollary:



Corollary 3.2 Let A: X = X* be maximally monotone. Then the following are equivalent.

(i) A is of type (D).
(ii) A is of type (NI).
(iii) A is of type (FP).

Proof. First (i) implies (ii1) is Fact 2.2 next Theorem Bl shows (i) implies (ii); while
Fact 23] implies concludes the circle with (i7) implies (i). |

We note that while the result is now quite easy, it remained inaccessible until [12, Theo-
rem 4.4] was available.

Remark 3.3 Let A: X = X* be maximally monotone. Corollary [3.2] establishes the equiv-
alences of the key types (D), (NI), and (FP), which as noted all hold when X is reflexive
or A = 0f, where f: X — ]—00,4+00] is convex, lower semicontinuous, and proper (see
[6, [17, [19)).

Furthermore, these notions are also equivalent to type (ED), see [20]. For a nonlinear
operator they also coincide with uniqueness of maximal extensions to X** (see [12]). In [6],
p. 454] there is discussion of this result and of the linear case.

Finally, when A is a linear relation, it has recently been established that all these notions
coincide with monotonicity of the adjoint multifunction A* (see [1]).
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