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Every maximally monotone operator of

Fitzpatrick-Phelps type is actually of dense type
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Abstract

We show that every maximally monotone operator of Fitzpatrick-Phelps type defined
on a real Banach space must be of dense type. This provides an affirmative answer to a
question posed by Stephen Simons in 2001 and implies that various important notions
of monotonicity coincide.
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1 Introduction

Throughout this note, we assume that X is a real Banach space with norm ‖ · ‖, that X∗

is the continuous dual of X , and that X and X∗ are paired by 〈·, ·〉. Let A : X ⇒ X∗ be
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a set-valued operator (also known as multifunction) from X to X∗, i.e., for every x ∈ X ,
Ax ⊆ X∗, and let graA =

{

(x, x∗) ∈ X ×X∗ | x∗ ∈ Ax
}

denote the graph of A. The domain
of A is domA =

{

x ∈ X | Ax 6= ∅

}

, while ranA = A(X) is the range of A. Recall that A
is monotone if

(1) 〈x− y, x∗ − y∗〉 ≥ 0, ∀(x, x∗) ∈ graA ∀(y, y∗) ∈ graA,

and maximally monotone if A is monotone and A admits no proper monotone extension. It
will be convenient to also say that graA is monotone or maximally monotone respectively in
this case. We can then simply say that (x, x∗) ∈ X ×X∗ is monotonically related to graA
if {(x, x∗)} ∪ graA is monotone.

We now recall the three fundamental types of monotonicity.

Definition 1.1 Let A : X ⇒ X∗ be maximally monotone. Then three key types of monotone
operators are defined as follows.

(i) A is of dense type or type (D) (1971, [11]) if for every (x∗∗, x∗) ∈ X∗∗ ×X∗ with

inf
(a,a∗)∈graA

〈a− x∗∗, a∗ − x∗〉 ≥ 0,

there exist a bounded net (aα, a
∗

α)α∈Γ in graA such that (aα, a
∗

α)α∈Γ weak*×strong con-
verges to (x∗∗, x∗).

(ii) A is of type negative infimum (NI) (1996, [16]) if

sup
(a,a∗)∈graA

(

〈a, x∗〉+ 〈a∗, x∗∗〉 − 〈a, a∗〉
)

≥ 〈x∗∗, x∗〉, ∀(x∗∗, x∗) ∈ X∗∗ ×X∗.

(iii) A is of type Fitzpatrick-Phelps (FP) (1992, [10]) if whenever U is an open convex
subset of X∗ such that U ∩ ranA 6= ∅, x∗ ∈ U , and (x, x∗) ∈ X ×X∗ is monotonically
related to graA ∩ (X × U) it must follow that (x, x∗) ∈ graA.

All three of these properties are known to hold for the subgradient of a closed convex
function and for every maximally monotone operator on a reflexive space. These and other
relationships known amongst these and other monotonicity notions are described in [6, Chap-
ter 8]. Monotone operators are fundamental objects in modern Optimization and Variational
Analysis; see, e.g., [3, 4, 5], the books [2, 6, 7, 14, 17, 19, 15, 21] and the references therein.

In Theorem 3.1 of this paper, we provide an affirmative to the following question, posed
by S. Simons [18, Problem 18, page 406]:

Let A : X ⇒ X∗ be maximally monotone such that A is of type (FP).
Is A necessarily of type (D)?
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In consequence, in Corollary 3.2 we record that the three notions in Definition 1.1 actually
coincide.

We shall utilize the following notation, in addition to standard notions from convex anal-
ysis: The open unit ball in X is UX =

{

x ∈ X | ‖x‖ < 1
}

, and the closed unit ball is
{

x ∈ X | ‖x‖ ≤ 1
}

. It is very convenient to identify X with its canonical image in the
bidual space X∗∗. Moreover, X ×X∗ and (X ×X∗)∗ = X∗ ×X∗∗ are paired via

〈(x, x∗), (y∗, y∗∗)〉 = 〈x, y∗〉+ 〈x∗, y∗∗〉,

where (x, x∗) ∈ X×X∗ and (y∗, y∗∗) ∈ X∗×X∗∗. We recall the following basic fact regarding
the second dual ball:

Fact 1.2 (Goldstine) (See [13, Theorem 2.6.26] or [8, Theorem 3.27].) The weak*-closure
of BX in X∗∗ is BX∗∗.

The remainder of this paper is organized as follows. In Section 2, we record auxiliary
results for subsequent use. The main result (Theorem 3.1) and the promised corollary
(Corollary 3.2) are provided in Section 3.

2 Preliminary monotonicity results

A now fundamental tool of modern monotone operator theory originated with Simon Fitz-
patrick in 1988. It is reprised next:

Fact 2.1 (Fitzpatrick) (See [9, Corollary 3.9].) Let A : X ⇒ X∗ be maximally monotone,
and let us set

(2) FA : X
∗∗ ×X∗ → ]−∞,+∞] : (x∗∗, x∗) 7→ sup

(a,a∗)∈graA

(

〈x∗∗, a∗〉+ 〈a, x∗〉 − 〈a, a∗〉
)

.

Then for every (x, x∗) ∈ X ×X∗, the inequality

〈x, x∗〉 ≤ FA(x, x
∗)

is true, and equality holds if and only if (x, x∗) ∈ graA.
The function FA|X×X∗ is the classical Fitzpatrick function associated with A.

The first relevant relationship established for (FP) operators is due to Stephen Simons:

Fact 2.2 (Simons) (See [18, Theorem 17] or [19, Theorem 37.1].) Let A : X ⇒ X∗ be
maximally monotone and of type (D). Then A is of type (FP).
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The most powerful current information is captured in the following result.

Fact 2.3 (Simons / Marques Alves and Svaiter) (See [16, Lemma 15] or [19, Theo-
rem 36.3(a)], and [12, Theorem 4.4].) Let A : X ⇒ X∗ be maximally monotone. Then A is
of type (D) if and only if it is of type (NI).

The implication type (NI) implies type (D) — which we exploit — is very recently due to
Marques Alves and Svaiter [12].

3 Main result

The next theorem is our main result. In conjunction with the corollary that follows, it
provides the affirmative answer promised to Simons’s problem posed in [18, Problem 18].

Theorem 3.1 Let A : X ⇒ X∗ be maximally monotone such that A is of type (FP). Then
A is of type (NI).

Proof. After translating the graph if necessary, we can and do suppose that (0, 0) ∈ graA.
Let (x∗∗

0 , x∗

0) ∈ X∗∗ ×X∗. We must show that

FA(x
∗∗

0 , x∗

0) ≥ 〈x∗∗

0 , x∗

0〉(3)

and we consider two cases.

Case 1 : x∗∗

0 ∈ X .
Then (3) follows directly from Fact 2.1.

Case 2 : x∗∗

0 ∈ X∗∗
rX .

By Fact 1.2, there exists a bounded net (xα)α∈I in X that weak* converges to x∗∗

0 . Thus, we
have

M = sup
α∈I

‖xα‖ < +∞(4)

and

〈xα, x
∗

0〉 → 〈x∗∗

0 , x∗

0〉.(5)

Now we consider two subcases.

Subcase 2.1 : There exists α ∈ I, such that (xα, x
∗

0) ∈ graA.
By definition,

FA(x
∗∗

0 , x∗

0) ≥ 〈xα, x
∗

0〉+ 〈x∗∗

0 , x∗

0〉 − 〈xα, x
∗

0〉 = 〈x∗∗

0 , x∗

0〉.
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Hence (3) holds.

Subcase 2.2 : We have

(xα, x
∗

0) /∈ graA, ∀α ∈ I.(6)

Set

Uε = [0, x∗

0] + εUX∗ ,(7)

where ε > 0. Observe that Uε is open and convex. Since (0, 0) ∈ graA, we have, by definition
of Uε, 0 ∈ ranA∩Uε and x∗

0 ∈ Uε. In view of (6) and because A is of type (FP), there exists
a net (aα,ε, a

∗

α,ε) in graA such that a∗α,ε ∈ Uε and

〈aα,ε, x
∗

0〉+ 〈xα, a
∗

α,ε〉 − 〈aα,ε, a
∗

α,ε〉 > 〈xα, x
∗

0〉, ∀α ∈ I.(8)

Now fix α ∈ I. By (8),

〈aα,ε, x
∗

0〉+ 〈x∗∗

0 , a∗α,ε〉 − 〈aα,ε, a
∗

α,ε〉 > 〈x∗∗

0 − xα, a
∗

α,ε〉+ 〈xα, x
∗

0〉.

Hence,

FA(x
∗∗

0 , x∗

0) > 〈x∗∗

0 − xα, a
∗

α,ε〉+ 〈xα, x
∗

0〉.(9)

Since a∗α,ε ∈ Uε, there exist

tα,ε ∈ [0, 1] and b∗α,ε ∈ UX∗(10)

such that

a∗α,ε = tα,εx
∗

0 + εb∗α,ε.(11)

Using (9), (11), and (4), we deduce that

FA(x
∗∗

0 , x∗

0) > 〈x∗∗

0 − xα, tα,εx
∗

0 + εb∗α,ε〉+ 〈xα, x
∗

0〉

= tα,ε〈x
∗∗

0 − xα, x
∗

0〉+ ε〈x∗∗

0 − xα, b
∗

α,ε〉+ 〈xα, x
∗

0〉

≥ tα,ε〈x
∗∗

0 − xα, x
∗

0〉 − ε‖x∗∗

0 − xα‖+ 〈xα, x
∗

0〉

≥ tα,ε〈x
∗∗

0 − xα, x
∗

0〉 − ε(‖x∗∗

0 ‖+M) + 〈xα, x
∗

0〉.(12)

In view of (10) and since α ∈ I was chosen arbitrarily, we take the limit in (12) and obtain
with the help of (5) that

FA(x
∗∗

0 , x∗

0) ≥ −ε(‖x∗∗

0 ‖+M) + 〈x∗∗

0 , x∗

0〉.(13)

Next, letting ε → 0 in (13), we have

FA(x
∗∗

0 , x∗

0) ≥ 〈x∗∗

0 , x∗

0〉.(14)

Therefore, (3) holds in all cases. �

We now obtain the promised corollary:

5



Corollary 3.2 Let A : X ⇒ X∗ be maximally monotone. Then the following are equivalent.

(i) A is of type (D).

(ii) A is of type (NI).

(iii) A is of type (FP).

Proof. First (i) implies (iii) is Fact 2.2; next Theorem 3.1 shows (iii) implies (ii); while
Fact 2.3 implies concludes the circle with (ii) implies (i). �

We note that while the result is now quite easy, it remained inaccessible until [12, Theo-
rem 4.4] was available.

Remark 3.3 Let A : X ⇒ X∗ be maximally monotone. Corollary 3.2 establishes the equiv-
alences of the key types (D), (NI), and (FP), which as noted all hold when X is reflexive
or A = ∂f , where f : X → ]−∞,+∞] is convex, lower semicontinuous, and proper (see
[6, 17, 19]).

Furthermore, these notions are also equivalent to type (ED), see [20]. For a nonlinear
operator they also coincide with uniqueness of maximal extensions to X∗∗ (see [12]). In [6,
p. 454] there is discussion of this result and of the linear case.

Finally, when A is a linear relation, it has recently been established that all these notions
coincide with monotonicity of the adjoint multifunction A∗ (see [1]).
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