Skip to main content
Log in

An outer-approximation approach for information-maximizing sensor selection

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

This paper addresses information-maximizing sensor selection that determines a set of measurement locations providing the largest entropy reduction in the estimates of the state variables. A new mixed-integer semidefinite program (MISDP) formulation is proposed for this selection under the constraints resulting from communication limitations. This formulation employs binary variables indicating if the corresponding measurement location is selected, and ensures convexity of the objective function and linearity of the constraint functions by exploiting the linear equivalent form of a bilinear term involving binary variables. An outer-approximation algorithm is then developed for the MISDP formulation that obtains the global optimal solution by solving a sequence of mixed-integer linear programs for which reliable solvers are available. Numerical experiments verify the solution optimality and the computational effectiveness of the proposed algorithm by comparing it to branch-and-bound-based approaches with nonlinear programming relaxation. An example of sensor selection to track a moving target is considered to demonstrate the applicability of the proposed method and highlight its ability to handle quadratic constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anstreicher K., Fampa M., Lee J., Williams J.: Using continuous nonlinear relaxations to solve constrained maximum-entropy sampling problems. Math. Progr. 85, 221–240 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anstreicher K., Fampa M., Lee J., Williams J.: Maximum-entropy remote sampling. Discrete Appl. Math. 18(3), 211–226 (2001)

    Article  MathSciNet  Google Scholar 

  3. Anstreicher K.M.: Semidefinite programming versus the reformulation-linearization technique for nonconvex quadratically constrained quadratic programming. J. Glob. Optim. 43(2–3), 471–484 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bertsekas D.: Dynamic Programming and Optimal Control, vol. I. Athena Scientific, Belmont (2005)

    Google Scholar 

  5. Boginski, V.L., Commander, C.W., Pardalos, P.M., Ye, Y. (eds): Sensors: Theory, Algorithms, and Applications. Springer, Berlin (2012)

    Google Scholar 

  6. Boyd S., Vandeberghe L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  7. Bueso M., Angulo J., Alonso F.: A state-space model approach to optimum spatial sampling design based on entropy. Environ. Ecol. Stat. 5, 29–44 (1998)

    Article  Google Scholar 

  8. Burer S., Lee J.: Solving maximum-entropy samping problems using factored masks. Math. Progr. 109(2–3), 263–281 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cheng M.X., Gong X.: Maximum lifetime coverage preserving scheduling algorithms in sensor networks. J. Glob. Optim. 51(3), 447–462 (2011)

    Article  MATH  Google Scholar 

  10. Choi H.L., How J.P.: Continuous trajectory planning of mobile sensors for informative forecasting. Automatica 46(8), 1266–1275 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Choi H.L., How J.P.: Coordinated targeting of mobile sensor networks for ensemble forecast improvement. IEEE Sens. J. 11(3), 621–633 (2011)

    Article  Google Scholar 

  12. Choi H.L., How J.P.: Efficient targeting of sensor networks for large-scale systems. IEEE Trans. Control Syst. Technol. 19(6), 1569–1577 (2011)

    Article  Google Scholar 

  13. Choi, H.L., How, J.P., Barton, P.I.: An outer-approximation algorithm for generalized maximum entropy sampling. In: American Control Conference (2008)

  14. Cover T., Thomas J.: Elements of Information Theory. Wiley, New York (1991)

    Book  MATH  Google Scholar 

  15. CPLEX: http://www.ilog.com/products/cplex/. Accessed Mar 2009

  16. Duran M., Grossmann I.: An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math. Progr. 36(3), 307–339 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fletcher R., Leyffer S.: Solving mixed integer nonlinear programs by outer approximation. Math. Progr. 66(1–3), 327–349 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Friedlander B., Weiss A.J.: On the second-order statistics of the eigenvectors of sample covariance matrices. IEEE Trans. Signal Process. 46(11), 3136–3139 (1998)

    Article  MathSciNet  Google Scholar 

  19. Glover F., Woosley E.: Converting the 0–1 polynomial programming problem to a 0–1 linear program. Oper. Res. 22(1), 180–182 (1972)

    Article  Google Scholar 

  20. Grocholsky B., Keller J., Kumar V., Pappas J.: Cooperative air and ground surveillance. IEEE Robot. Autom. Mag. 13(3), 16–25 (2006)

    Article  Google Scholar 

  21. Grocholsky, B., Makarenko, A., Durrant-Whyte, H.: Information-theoretic coordinated control of multiple sensor platforms. In: IEEE International Conference on Robotics and Automation, pp. 1521–1526. Taipei, Taiwan (2003)

  22. Hirsch, M.J., Pardalos, P.M., Murphey, R. (eds): Dynamics of Information Systems. Springer, Berlin (2010)

    MATH  Google Scholar 

  23. Hoffman, A., Lee, J., Williams, J.: New upper bounds for maximum-entropy sampling. In: MODA 6—Advances in Model-Oriented Design and Analysis, pp. 143–153 (2001)

  24. Hoffmann G., Tomlin C.J.: Mobile sensor network control using mutual information methods and particle filters. IEEE Trans. Autom. Control 55(1), 32–47 (2010)

    Article  MathSciNet  Google Scholar 

  25. Horn R.A., Johnson C.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  26. Johnstone I.M.: On the distribution of the largest eigenvalue in principal components analysis. Ann. Stat. 29(2), 295–327 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kesavan P., Allgor R., Gatzke E., Barton P.I.: Outer approximation algorithms for separable nonconvex mixed-integer nonlinear programs. Math. Progr. Ser. A 100(3), 517–535 (2004)

    MathSciNet  MATH  Google Scholar 

  28. Kesavan P., Barton P.: Decomposition algorithms for nonconvex mixed-integer nonlinear programs. AIChE Symp. Ser. 96(323), 458–461 (1999)

    Google Scholar 

  29. Ko C.W., Lee J., Queyranne M.: An exact algorithm for maximum entropy sampling. Oper. Res. 43(4), 684–691 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. Krause A., Singh A., Guestrin C.: Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms and empirical studies. J. Mach. Learn. Res. 9(2), 235–284 (2008)

    MATH  Google Scholar 

  31. Lee J.: Constrained maximum-entropy sampling. Oper. Res. 46(5), 655–664 (1998)

    Article  MATH  Google Scholar 

  32. Lee J., Williams J.: A linear integer programming bound for maximum-entropy sampling. Math. Progr. Ser. B 94, 247–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Park S., Choi H.-L., Roy R., How J.P.: Learning the covariance dynamics of a large-scale environment for informative path planning of unmanned aerial vehicle sensors. Int. J. Aeronaut. Space Sci. 11(4), 326–337 (2010)

    Google Scholar 

  34. Shewry M., Wynn H.: Maximum entropy sampling. J. Appl. Stat. 46, 165–170 (1987)

    Article  Google Scholar 

  35. TOMLAB BARNLP: http://tomopt.com/docs/tomlab/tomlab004.php. Accessed Feb 2012

  36. TOMLAB CPLEX: http://tomopt.com/tomlab/products/cplex/. Accessed Mar 2009

  37. TOMLAB KNITRO: http://tomopt.com/tomlab/products/knitro/. Accessed Mar 2009

  38. Wang, H., Yao, K., Pottie, G., Estrin, D.: Entropy-based sensor selection heuristic for target localization. In: International Symposium on Information Processing in Sensor Networks, pp. 36–45. Berkeley (2004)

  39. Williams J.L., Fisher J.W. III, Willsky A.S.: Approximate dynamic programming for communication-constrained sensor network management. IEEE Trans. Signal Process. 55(8), 3995–4003 (2007)

    Article  MathSciNet  Google Scholar 

  40. Zhang Y., Ji Q.: An algorithm for the construction of ‘d k -optimal’ experimental designs. Technometrics 16, 203–210 (1974)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-Lim Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, HL., How, J.P. & Barton, P.I. An outer-approximation approach for information-maximizing sensor selection. Optim Lett 7, 745–764 (2013). https://doi.org/10.1007/s11590-012-0457-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-012-0457-9

Keywords

Navigation