Skip to main content
Log in

Incomplete inference for graph problems

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

Recently, a resolution-based transformation has been introduced for the usual Max-SAT encoding of several graph problems such as the Minimum Vertex Covering, Maximum Clique and Combinatorial Auctions which consists in iteratively applying specific inference rules to transform and simplify the original formula. Such transformation was shown suitable to improve the performance of local and systematic search procedures. In this paper, we present several refinements for such transformation. In particular, we introduce a more suitable transformation for the Minimum Vertex Covering problem, specially for its weighted version, and we extend its use for the Maximum Cut problem. Empirical results indicate that systematic Max-SAT solvers improve substantially their performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alsinet T., Manyà F., Planes J.: An efficient solver for weighted Max-SAT. J. Glob. Optim. 41(1), 61–73 (2008)

    Article  MATH  Google Scholar 

  2. Anbulagan, P., Pham, D.N., Slaney, J.K., Sattar, A.: Old resolution meets modern SLS. In: AAAI, pp. 354–359 (2005)

  3. Argelich J., Li C., Manyà F., Planes J.: The first and second Max-SAT evaluations. J. Satisf. Boolean Model. Comput. 4(2–4), 251–278 (2008)

    MATH  Google Scholar 

  4. Bansal, V., Bafna, V.: Hapcut: an efficient and accurate algorithm for the haplotype assembly problem. In: ECCB, pp. 153–159 (2008)

  5. Bonet M.L., Levy J., Manyà F.: Resolution for Max-SAT. Artif. Intell. 171(8–9), 606–618 (2007)

    Article  MATH  Google Scholar 

  6. Drake, L., Frisch, A.M.: Combining inference and search for the propositional satisfiability problem. In: AAAI/IAAI, p. 982 (2002)

  7. Du D., Gu J., Pardalos P.M.: Satisfiability Problem: Theory and Applications. DIMACS Series, vol. 35. American Mathematical Society, Providence (1998)

    Google Scholar 

  8. Fahle, T.: Simple and fast: improving a branch-and-bound algorithm for maximum clique. In: Proceedings of ESA, pp. 485–498 (2002)

  9. Fu, Z., Malik, S.: On solving the partial max-sat problem. In: SAT, pp. 252–265 (2006)

  10. de Givry, S., Larrosa, J., Meseguer, P., Schiex, T.: Solving Max-SAT as weighted CSP. In: CP, pp. 363–376 (2003)

  11. Guerri, A., Milano, M.: CP-IP techniques for the bid evaluation in combinatorial auctions. In: CP, pp. 863–867 (2003)

  12. Heras F., Bañeres D.: The impact of max-sat resolution-based preprocessors on local search solvers. J. Satisf. Boolean Model. Comput. 7(2–3), 89–126 (2010)

    MathSciNet  Google Scholar 

  13. Heras, F., Larrosa, J.: A Max-SAT inference-based pre-processing for max-clique. In: SAT, pp. 139–152 (2008)

  14. Heras F., Larrosa J., de Givry S., Schiex T.: 2006 and 2007 Max-SAT evaluations: Contributed instances. J. Satisf. Boolean Model. Comput. 4(2–4), 239–250 (2008)

    MATH  Google Scholar 

  15. Heras F., Larrosa J., Oliveras A.: MiniMaxSAT: an efficient weighted Max-SAT solver. J. Artif. Intell. Res. 31, 1–32 (2008)

    MathSciNet  MATH  Google Scholar 

  16. Leyton-Brown, K., Pearson, M., Shoham, Y.: Towards a universal test suite for combinatorial auction algorithms. ACM E-Commerce, pp. 66–76 (2000)

  17. Larrosa J., Heras F., de Givry S.: A logical approach to efficient Max-SAT solving. Artif. Intell. 172(2–3), 204–233 (2008)

    Article  MATH  Google Scholar 

  18. Li C., Manyà F., Planes J.: New inference rules for Max-SAT. J. Artif. Intell. Res. 30, 321–359 (2007)

    Google Scholar 

  19. Li, C.M., Quan, Z.: An efficient branch-and-bound algorithm based on maxsat for the maximum clique problem. In: AAAI (2010)

  20. Lin, H., Su, K., Li, C.M.: Within-problem learning for efficient lower bound computation in Max-SAT solving. In: AAAI, pp. 351–356 (2008)

  21. Marques-Silva, J., Planes, J.: Algorithms for maximum satisfiability using unsatisfiable cores. In: DATE, pp. 408–413 (2008)

  22. Niedermeier R., Rossmanith P.: New upper bounds for maximum satisfiability. J. Algorithms 36(1), 63–88 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Östergård P.R.J.: A new algorithm for the maximum-weight clique problem. Nord. J. Comput. 8(4), 424–436 (2001)

    MATH  Google Scholar 

  24. Östergård P.R.J.: A fast algorithm for the maximum clique problem. Discrete Appl. Math. 120, 197–207 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Palubeckis G.: A new bounding procedure and an improved exact algorithm for the max-2-sat problem. Appl. Math. Comput. 215(3), 1106–1117 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pardalos, P.M., Rebennack, S.: Computational challenges with cliques, quasi-cliques and clique partitions in graphs. In: SEA, pp. 13–22 (2010)

  27. Pardalos P.M., Resende M.G.C., Pitsoulis L.S.: Fortran subroutines for computing approximate solutions of weighted max-sat problems using grasp. Discrete Appl. Math. 100, 95–113 (1999)

    Google Scholar 

  28. Pipatsrisawat K., Palyan A., Chavira M., Choi A., Darwiche A.: Solving weighted Max-SAT problems in a reduced search space: a performance analysis. J. Satisf. Boolean Model. Comput. 4, 191–217 (2008)

    MATH  Google Scholar 

  29. Ramírez, M., Geffner, H.: Structural relaxations by variable renaming and their compilation for solving MinCostSAT. In: CP, pp. 605–619 (2007)

  30. Selman, B., Kautz, H.A., Cohen, B.: Noise strategies for improving local search. In: AAAI, pp. 337–343 (1994)

  31. Simone C.D., Diehl M., Jünger M., Mutzel P., Reinelt G., Rinaldi G.: Exact ground states in spin glasses: New experimental results with a branch-and-cut algorithm. J. Stat. Phys. 80, 487–496 (1995)

    Article  MATH  Google Scholar 

  32. Strickland D.M., Barnes E., Sokol J.S.: Optimal protein structure alignment using maximum cliques. Oper. Res. 53(3), 389–402 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tomita, E., Sutani, Y., Higashi, T.: A more efficient algorithm for finding a maximum clique with an improved approximate coloring. In: PDPTA, pp. 719–725 (2007)

  34. Xu K., Boussemart F., Hemery F., Lecoutre C.: Random constraint satisfaction: Easy generation of hard (satisfiable) instances. Artif. Intell. 171(8–9), 514–534 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Baneres.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heras, F., Baneres, D. Incomplete inference for graph problems. Optim Lett 7, 791–805 (2013). https://doi.org/10.1007/s11590-012-0461-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-012-0461-0

Keywords

Navigation