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Abstract

We show that suitable restatements of the classical Weierstrass ex-
treme value theorem give necessary and sufficient conditions for the exis-
tence of a global minimum and of both a global minimum and a global
maximum.

1 Introduction

The classical Weierstrass extreme value theorem asserts that a real-valued con-
tinuous function f on a compact topological space attains a global minimum
and a global maximum. In fact a stronger statement says that if f is lower semi-
continuous (but not necessarily continuous) then f attains a global minimum
(though not necessarily a global maximum). The classical result easily follows
from the latter statement by applying it to f and to —f, since lower semicon-
tinuity of these two functions is equivalent to continuity of f. An immediate
but generally neglected observation is that the conclusion of this theorem, that
is, the existence of a global minimum, does not refer to any specific topology;
consequently, one is free to consider the most convenient topology (other than
any "natural” topology in the problem under consideration) to investigate the
existence of a global minimum (see, e.g., [1, Thm. 1.1]). The aim of this note
is to point out that, under this formulation, the Weierstrass extreme value the-
orem provides a necessary and sufficient condition for the existence of a global
minimum. Similarly, we will show that another suitable restatement provides a
necessary and sufficient condition for the existence of both a global minimum
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and a global maximum. All this will be done in the next section, in which with
no extra effort we will prove the results in the more general setting of functions
taking values in a totally ordered set C.

We will endow C' with its order topology (see, e.g., [2]), namely, the one
having as a subbase all the sets of the types (¢, +00) := {y € C: ¢ <y} and
(—o0,¢) i ={yeC:y=<c}, with ¢ € C. If X is a topological space, a func-
tion f : X — C is said to be lower semicontinuous if the set {f > ¢} :=
f71 ((¢, +00)) is open for every c € C.

2 Results

Theorem 1 Let X be a nonempty set, C be a totally ordered set, endowed with
the order topology, and f : X — C. The following statements are equivalent:
(1) X is compact in the coarsest topology that makes f lower semicontinuous.
(2) There exists a topology on X which makes X compact and [ lower semi-
continuous.
(8) f has a global minimum.

Proof. Implication (1) = (2) is obvious. Implication (2) = (3) is Weierstrass
theorem, which in our general setting still admits its standard proof: If f has no
global minimum then the open sets {f > f (z)} (z € X) make an open cover of
X, which, by compactness, admits a finite subcover {f = f (x1)},.... {f = f (zn)},
but then the x; for which f (x;) is the smallest among {f (x1),..., f (zn)} is a
global minimum, thus yielding a contradiction.

It only remains to prove implication (3) => (1). Assume (3) and consider
the topology having as base X and all sets of the type {f = ¢} (c € C), that

is, the open sets are X and all sets of the form U {f » ¢;}. Obviously, the
iel
topology thus defined makes f lower semicontinuous and is the coarsest with
this property. We will now prove that X is compact in this topology. Let O be
an open cover of X, and take a global minimum « € X of f. One has x € U for
some U € O. Then either U = X or U = U {f > ¢} for some family {¢;}
i€l
of elements of C. In the latter case, since z € U = U {f > ¢}, it turns out
i€l

that U = X too. Thus O admits the open cover {X}, which shows that X is
compact. H

It is worth observing that the coarsest topology 7 that makes f lower semi-
continuous is very peculiar. If f (X) is finite then the cardinality of 7 is that of
f(X) plus 1, since in this case the open sets are X and {f > f(x)} (x € X).
On the other hand, in the general case the boundary of every nonempty open
set coincides with its complement. Consequently, every closed set different from
X has an empty interior. Therefore, every nonempty set different from X has
a nonempty boundary; in other words, X is connected. In fact, it is easy to see
that every set is connected.

iel



As an eagsy illustrative example, consider the case when f : R — R is the
characteristic function of the set of irrational numbers, that is, f (z) = 0 if
x is rational and f(x) = 1 otherwise. The coarsest topology that makes f
lower semicontinuous has exactly three open sets: (), R and the set of irrational
numbers. This is in sharp contrast with the standard topology of the real line,
with respect to which f has no lower semicontinuity property and has a very
strange topological structure.

We also want to point out that the standard textbook version of Weierstrass
extreme value theorem, namely, the one stating that a real-valued continuous
function f on a compact topological space attains both a global minimum and
a global maximum, does not admit a restatement of the type of Theorem 1.
Consider, for instance, the set X := {% n=1,23, ...}U{—l} and the function
f: X — R defined by f (x) := x, which attains a global minimum at z := —1
and a global maximum at z := 1. Clearly, the only topology on X under which
f is continuous is the discrete one, but X is not compact under this topology.

In spite of the preceding example, a suitable reformulation of the classical
version of Weierstrass theorem allows for a restatement similar to Theorem 1:

Theorem 2 Let X be a nonempty set, C be a totally ordered set, endowed with
the order topology, and f : X — C. The following statements are equivalent:

(1) There exist c1,co € C such that the sets {f <1} :={x e X : f(x) 21}
and {f = co} :={x € X : f(x) > c2} are nonempty and compact in the coarsest
topology that makes f continuous.

(2) There exist c1,c2 € C such that the sets {f <1} ={x e X : f(z) 21}
and {f = co} :={x € X : f(x) = ca} are nonempty and compact in some topol-
ogy which makes f continuous.

(8) f has a global minimum and a global mazimum.

Proof. Implication (1) = (2) is obvious. Implication (2) = (3) follows
from Weierstrass theorem, as a global minimum (maximum) of f over {f < ¢}
({f = c2}, respectively) is a global minimum (maximum, respectively) of f over
the whole set X. To prove implication (3) = (1), take a global minimum z;
and a global maximum x5 of f and set ¢; := f(x;) (i = 1,2). We will now
prove that the nonempty set {f < ¢1} is compact. Let O be an open cover of
{f =X c1}. Since 1 € {f <1}, one has 21 € U for some U € O. As U is the
preimage under f of some open set in C and the sets (¢, +00), (—00,c’) and
(¢, +00) N (—00, ') make a base of the topology of C when ¢ and ¢’ run over the
whole of C, x1 must belong to some subset of U of one of the following three
types: {f = ¢}, {f <} = f1((—o0,¢)) and {f = c}N{f < ¢’} . Clearly, such
a subset contains f~!(c;) = {f < c1}; hence O admits the open cover {U},
which shows that {f < ¢1} is compact. One can similarly prove the compactness
of the nonempty set {f > c2}. ®
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