Skip to main content
Log in

A dynamic edge covering and scheduling problem: complexity results and approximation algorithms

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

We consider a new dynamic edge covering and scheduling problem that focuses on assigning resources to nodes in a network to minimize the amount of time required to process all edges in it. Resources need to be co-located at the endpoints of an edge for it to be processed and, therefore, this problem contains both edge covering and scheduling decisions. These new problems have motivating applications in traffic systems and military intelligence operations. We provide complexity results for the dynamic edge covering and scheduling problem over different types of networks. We then show that existing approximation algorithms for parallel machine scheduling problems can be leveraged to provide approximation algorithms for this new class of problems over certain types of networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Asahiro, Y., Hassin, R., Iwama, K.: Complexity of finding dense subgraphs. Discret. Appl. Math. 121, 15–26 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Asahiro, Y., Iwama, K., Tamaki, H., Tokuyama, T.: Greedily finding a dense subgraph. J. Algorithms 34, 203–221 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chen, A., Chootinan, P., Pravinvongvuth, S.: Multiobjective model for locating automatic vehicle identification readers. Transp. Res. Record J. Transp. Res. Board 49–58, 2004 (1886)

    Google Scholar 

  4. Coffman, E.G., Garey, M.R., Johnson, D.S.: An application of bin-packing to multiprocessor scheduling. SIAM J. Comput. 7, 1–17 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  5. Feige, U., Korstsarz, G., Peleg, D.: The dense \(k\)-subgraph problem. Algorithmica 29, 410–421 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Feige, U., Langberg, M.: Approximation algorithms for maximization problems arising in graph partioning. J. Algorithms 41, 174–211 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Friesen, D.K.: Tighter bounds for the MULTIFIT processor scheduling algorithm. SIAM J. Comput. 13, 170–181 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  8. Garey, M.R., Johnson, D.S.: Computers and intractability. W.H. Freeman and Company, New York (1979)

  9. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math. 17, 263–269 (1969)

    Google Scholar 

  10. Khot, S.: Ruling out PTAS for graph min-bisection, dense \(k\)-subgraph, and bipartite clique. SIAM J. Comput. 36, 1025–1071 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Pinedo, M.L.: Scheduling: Theory, Algorithms, and Systems, 4th edn. Springer, New York  (2012)

  12. Roupin, F., Billionnet, A.: A deterministic approximation algorithm for the densest \(k\)-subgraph problem. Int. J. Oper. Res. 3, 301–314 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Sherali, H.D., Desai, J., Rakha, H.: A discrete optimization approach for locating Automatic Vehicle Identification readers for the provision of roadway travel times. Transp. Res. Part B: Methodol. 40, 857–871 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas C. Sharkey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, J., Sharkey, T.C. A dynamic edge covering and scheduling problem: complexity results and approximation algorithms. Optim Lett 8, 1201–1212 (2014). https://doi.org/10.1007/s11590-013-0658-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-013-0658-x

Keywords

Navigation