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Abstract The Steiner tree problem in Euclidean space E3 asks for a minimum
length network T , called a Euclidean Steiner Minimum Tree (ESMT), spanning a
given set of points. This problem is NP-hard and the hardness is inherently due to
the number of feasible topologies (underlying graph structure of T ) which increases
exponentially as the number of given points increases. Planarity is a very strong
condition that gives a big difference between the ESMT problem in the Euclidean
plane E2 and in Euclidean d-space Ed(d ≥ 3): The ESMT problem in the plane is
practically solvable whereas the ESMT problem in d-space is really intractable. The
simplest tree rearrangement technique is to repeatedly replace a subtree spanning
4 nodes in T with another subtree spanning the same 4 nodes. This technique is
referred to as the Swapping 4-point Topology/Tree (S4pT ) technique in this paper.
An indicator (or quasi-indicator) of T plays a similar role in the optimization of the
length L(T ) of T in the discrete topology space (the underlying graph structure of
T ) to the derivative of a differentiable function which indicates a fastest direction
of descent. T will be called S4pT-optimal if it is optimal with respect to swapping
4-point subtrees. In this paper we first make a complete analysis of 4-point trees in
Euclidean space exploring all possible types of 4-point trees and their properties.
We review some known indicators of 4-point ESMTs in E2, and give some simple
geometric proofs of these indicators. Then, we translate these indicators to E3),
producing 8 quasi-indicators in E3 using computational experiments, the best
quasi-indicator ρosr is sifted with an effectiveness for randomly generated 4-point
sets as high as 98.62%. Finally we show how ρosr is used to find an S4pT-optimal
ESMT on 14 probability vectors in 4d-space with a detailed example.
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1 Introduction and Motivation

The Steiner tree problem asks for a minimum length network T on a given set V

of n points in a metric space. The network T = T (V ) is called a Steiner minimum

tree (SMT). In particular, if the tree is in Euclidean d-space Ed then it is called
a Euclidean Steiner minimum tree (ESMT). The length LT (V ) (or L(T )) of T de-
pends on the given point set (the configuration) V , as well as the topology τ , which
is the underlying graph structure of T . To shorten the length LT = LT (V ), some
additional points s1, s2, · · · may be added to V , which are called Steiner points,
while the points in V are called terminals. Note that the location of the Steiner
points sj = sj(t) in T depends on the topology τ . In general, a tree topology with
all points having degree at most three is called a Steiner topology. In this paper
the word ‘Steiner’ is often abbreviated as ‘S-’, e.g. S-point, S-tree, S-topology. A
Steiner topology, or a tree, is full if all terminals are of degree one. As a result
all Steiner points in a full Steiner topology are of degree three. In a full topol-
ogy/tree an edge incident to a terminal is called a terminal edge while all other
edges are interior edges. If some edges in a topology/tree are shrunken to points,
then the topology/tree is called degenerate [11,12]. Since the topology τ1, τ2, · · · is
a discrete variable in the topology space T while the locations of Steiner points
sj (j = 1, 2, · · · ) are continuous variables in Ed, the Steiner tree problem in Ed

is a mixed type of optimization problem and can be formally defined as an un-
constrained optimization problem as follows: Given a point set V in Ed, find a
network T (V ) whose length is

min
τi∈T

min
sj(τi)∈Ed

LT (V )(τi, sj(τi)). (1)

There is also a graph version of the Steiner tree problem where an underlying
graph G is given and all the given points and Steiner points are nodes of the graph
G. Both versions of the Steiner tree problem have been proved to be NP-hard [13,9].
The Steiner tree problem has a wide range of applications such as computational
phylogenetic analysis [3,26,27]; the structure of molecules (modeling and folding
of molecular structure) [15,21]; in communication networks [4] and in the design
of underground mining networks [2].

A network is S-point optimal if the locations of S-points are optimal for a fixed
topology, i.e. optimal over all networks with the same topology, while a network
is S-topology optimal if its length is S-point optimal over all feasible topologies.
The two levels of optimization are clearly seen in the objective function (1). The
NP-hardness of the ESMT problem is inherently due to the number of feasible
topologies, i.e., the size of T increases exponentially with the number of given
points. Because of the convexity of the Euclidean metric, once a topology is fixed,
locating all the Steiner points in T (S-point optimization) is a convex optimization
problem which can be solved by a convex optimization program, e.g., CVX [10].
Therefore, the ESMT problem is NP-hard essentially on the S-topology level. The
exponential increase of the size of T does not mean that the ESMT problem is
intractable in all cases. In fact, planarity is a very strong condition that gives a big
difference between the ESMT problem in the Euclidean plane and in Euclidean
d-space (d ≥ 3).
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– At the S-point optimization level, the length of a full Steiner tree LT in the
plane has a closed form which can be derived from the Melzak Euclidean con-
struction [14] or from the hexagonal coordinate method [29,24]. On the other
hand, it has been proved that if d ≥ 3 and if V has at least 4 terminals, then
LT does not have a closed form, that is, LT cannot be computed by radicals
(algebraically unsolvable) [19] and has to be computed by numerical iteration.

– At the S-topology optimization level, the divergence between the planar and
spatial Euclidean Steiner tree problem is clearly shown in the existing algo-
rithms for the ESMT problem. For the planar case, the program GeoSteiner
can solve an ESMT problem for more than 10,000 terminals [1] while the best
program for finding ESMTs in d-space, to the authors’ knowledge, is either the
original program proposed by W. Smith [20] or its improvement [6], which can
only solve the ESMT problem in d-space for up to 10 terminals.

From the above facts we can conclude that the ESMT problem in the plane
is practically solvable whereas the ESMT problem in d-space (d ≥ 3) is really
intractable. Hence the question arises: can we find an algorithm for constructing
sub-optimal ESMTs on the S-topology level? Here ‘sub-optimal’ means locally
optimal in the topology space T . This problem is the focus of this paper.

Note that there is only one S-topology where there is a single S-point, con-
sequently an S-topology with two S-points becomes the ‘cell’ of S-topologies. As
we know there are 3 different S-trees, say T s

i , i = 1, 2, 3 on four points. Hence, the
simplest topology rearrangement technique for an S-tree T spanning n (≥ 4) ter-
minals is to repeatedly replace a sub-tree T s

i spanning 4 nodes in T with another
sub-tree T s

j (j 6= i) spanning the same 4 nodes. This technique is well known as
Nearest Neighbor Interchange (NNI ) and has been widely applied in computational
phylogenetic analysis [22,8,23]. However, to the authors’ knowledge, nobody has
used the NNI technique in order to find Steiner minimal trees in Euclidean d-space.
For simplicity, in this paper an S-topology or an S-tree on four points will be re-
ferred to as a 4-point topology or 4-point tree, and the interior edge of the 4-point
topology or tree is referred as the mid-topology or mid-edge of the tree, respectively.
This basic topology rearrangement technique NNI will be referred to as the Swap-

ping 4-point Topology/Tree (S4pT ) technique in this paper. An ESMT T is called
S4pT-optimal if it cannot be improved by the S4pT technique, that is, all 4-point
subtrees in T are optimal. The S4pT technique can be used to find sub-optimal
ESMTs in Ed(d ≥ 3) due to the following fact [25]:

Proposition 1 Any two full Steiner topologies in T can be changed, each to other, by

consecutively swapping 4-point sub-topologies.

This paper has three parts. In the first part (Section 2) we make a complete
analysis of 4-point trees in Euclidean space in order to explore all the possible
(degenerate or non-degenerate) types of 4-point trees, their properties and rela-
tions, and to indicate how to locate the Steiner points in each type of 4-point tree.
Because the length of locally minimal 4-point trees does not have a closed form in
Ed (d ≥ 3), a new optimization search technique, called quasi-indicator, was intro-
duced [30]. Roughly speaking, an indicator is a function that is simple to compute
and that indicates the optimal solution to the original optimization problem while
a quasi-indicator is an indicator that is valid in almost all instances (i.e., valid with
a high probability) of the optimization problem. For a differentiable objective func-
tion f(X), the derivative f ′(X) indicates the direction of fastest descent. However,
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the topology τ is a discrete variable for L(T ). In this case an indicator plays a sim-
ilar role to the derivative f ′(X) for the objective f(X), and S4pT-optimal is locally

optimal in the topology space T . In the second part (Section 3) we first review some
known indicators of 4-point minimal trees in the Euclidean plane, and give some
simple geometric proofs of these indicators. Then, we translate these indicators to
Euclidean space E3, producing 8 quasi-indicators for 4-point minimum trees in E3.
Finally, we design computational experiments on these quasi-indicators that ex-
tend (both in the number of quasi-indicators and in the size of experimental data)
our previous experiments given in [30]. From the computational experiments the
best quasi-indicator ρosr is sifted whose effectiveness for randomly generated 4-
point sets is as high as 98.62%. In the last part (Section 4) we show how ρosr is
used for finding an S4pT-optimal ESMT on 14 probability vectors in 4d-space in
a detailed example.

2 A Complete Analysis of 4-Point Trees in Euclidean Space

2.1 Types of 4-point trees

As a network optimization problem the Steiner tree problem can be studied in any
ℓp, p ≥ 1, space. In the Euclidean plane for a fixed Steiner topology the Steiner
tree T (V ), for any size of V , can be constructed in O(n) time either by the Melzak
construction [14] or by the hexagonal coordinate method [29]. Both of the methods
are based on locating a non-degenerate Steiner point s spanning three given points,
say a, b, c. The basic property of this degree-3 Steiner point s is the so-called 120◦

condition (see below Corollary 1). Let eab be the third vertex of the equilateral
triangle based on the line segment ab and lying on the opposite side of c. This
point is called an E-point of △abc with respect to ab. The important properties of
E-points are given in the following proposition.

Proposition 2 Suppose eab is the E-point of △abc with respect to ab.

(1) The line ceab (called a Simpson line) intersects ab at a point jab (the Simpson

intersection on ab) [19].

(2) The Steiner point s for △abc lies on ceab. Hence, s can easily be computed as the

intersection of two Simpson lines [25].
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Fig. 1 Three full Steiner topologies on four points.

A Steiner point s may be degenerate. There are two types of degeneracies.
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Fig. 2 Three types of 4-point trees.

1. (Type I) s collapses into a neighboring terminal p. In this case p becomes a
terminal of degree greater than one and the tree becomes a union of full trees.

2. (Type II) Two adjacent Steiner point s1, s2 collapse into each other. In this
case the new point s = s1 = s2 becomes a degree-4 point and the topology τ

is not actually a Steiner topology but a degenerate Steiner topology. However, for
convenience we still refer to s as a Steiner point and τ as a Steiner topology.

For the rest of this paper suppose V is a point set consisting of four points
a, b, c, d in Euclidean space. For the spatial set V there exist three full Steiner
topologies, which are denoted by τi, and the corresponding ESMTs are denoted
by Ti = T (V, τi), i = 1, 2, 3 as shown in Fig. 1. If a Steiner point joins two terminals,
say p, q, then it is denoted by spq. Similarly, let mpq denote the midpoint of a line
segment pq. Moreover, similar to the notation for Steiner points and midpoints,
the three trees Ti can be directly denoted as Tab-cd, Tad-bc, Tac-bd as shown in Fig.
1. If the tree currently studied is Tab-cd, then the other two trees Tad-bc, Tac-bd are
referred to as trees associated with Tab-cd.

2.2 Locating Seiner points

Now we discuss how to locate the Steiner points in each of the three types of
4-point trees in space.

(i) A full 4-point tree.

As stated in Section 1, there are no closed forms for computing the two Steiner
points. However, we can alternately, and iteratively, locate the Steiner points using
Proposition 2. Take T1 = Tab-cd as an example. We can locate the Simpson in-
tersections jab, jcd (Fig. 2(a)) alternately and the procedure is convergent because
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of the convexity of the tree length. Once jab, jcd are determined then sab, scd can
be located using the 120◦ condition. The reader can refer to [19] for the detailed
iteration formulae.
(ii) A degenerate tree of Type I.

Suppose ab in T1 is tilted around a away from the Simpson intersection jcd, then
the Steiner point sab collapses into terminal a, and T becomes a union of a full
Steiner tree and a line segment ab (Fig. 2(b)). In this case scd can be determined
directly using the three terminals a, c, d and we need only to check and to confirm
that 6 bascd ≥ 120◦. (Note that a degenerate tree of Type I can contain not only
one but two degenerate Steiner points, i.e., not only sab but also scd may collapse
into an adjacent terminal.)
(iii) A degenerate tree of Type II.

Suppose ab in T1 moves toward cd along sabscd, then the two Steiner points sab, scd

will become closer and closer. When ab and cd are close enough the Steiner points
will collapse into one (Fig. 2(c)). Such a degree-4 Steiner point s can be deter-
mined using the variational method, that is, s can be determined by the variations
(directional derivatives) of the lengths of edges joining s. (In E3 three variations in
three independent directions are needed.) Suppose the endpoint p of a line segment
pq is perturbed in direction −→pr with q fixed. Then the directional derivative of the
length L(pq) is [18]

L̇(pq) = −cos(6 qpr) =
|qp|2 + |pr|2 − |qr|2

2|qp||pr|
def
== fvar(qpr). (2)

In principle we can use any three independent directions to locate a degree-4
Steiner point s but the simplest set is the three axis directions. Let s = [x, y, z], X =
[1, 0, 0], Y = [0, 1, 0], Z = [0, 0, 1]. Then x, y, z are determined by the variations of
the lengths of as, bs, cs and ds:

fvar(asX) + fvar(bsX) + fvar(csX) + fvar(dsX) = 0,

fvar(asY ) + fvar(bsY ) + fvar(csY ) + fvar(dsY ) = 0, (3)

fvar(asZ) + fvar(bsZ) + fvar(csZ) + fvar(dsZ) = 0.

Remark 1 Note that like the Steiner points in a full 4-point tree, this system is
also algebraically unsolvable, and an iteration algorithm is needed to solve the
system of Equations (3). Note also that the initial solution s0 = [x0, y0, z0] should
lie inside the tetrahedron abcd, e.g., s0 = (a + b + c + d)/4, otherwise the iteration
procedure may converge to a point outside the tetrahedron and the point is not
the required degree-4 Steiner point.

An important fact in the variational argument is given by the following lemma
[18].

Lemma 1 Suppose two edges ps and qs meet at s with angle α < 180◦ and s is per-

turbed in 6 psq. Then, the variation of L(ps)+L(qs) is minimized when s moves along

the bisector of the angle. Consequently, the variation of L(ps) + L(qs) is maximized

when s moves along the opposite direction to the bisector of the angle.

Corollary 1 (120◦ condition) Any Steiner point s of degree 3 in an ESMT T in

Euclidean space Ed(d ≥ 2) lies in the triangle composed of its three adjacent points

and all three angles at s are 120◦. It follows that if T spans 3 points a, b, c in Ed then

T lies in the plane determined by △abc.
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Corollary 2 (splitting angle) If an angle pqr is strictly less than 120◦, then |pq| +
|qr| > |ps| + |qs| + |rs| where s is the S-point for triangle pqr.

Theorem 1 If an S-tree T contains a Steiner point s whose degree is no less than 4,

then T cannot be globally optimal.

Proof Suppose s spans at least 4 nodes in T , let Ts be the subtree consisting of the
edges linking s. Then, there are at least two edges of s, say sa, sb such that 6 asb is
strictly less than 120◦. Hence, T as well as Ts is not optimal by the above corollary.

The variational argument also gives the following properties of degree-4 Steiner
points. Let −→sx denote an arrow with the direction from s to x.

Theorem 2 Suppose Ts spanning four distinct points a, b, c, d is an S-point optimal

tree with s as a degree-4 S-point. The 6 sides of the tetrahedron abcd form 3 pairs of

opposite sides (ab, cd), (ac, bd), (ad, bc), and the four terminal edges as, bs, cs, ds form 3

pairs of opposite angles (6 asb, 6 csd), (6 asc, 6 bsd), (6 asd, 6 bsc) subtending the afore-

mentioned 3 pairs of opposite sides, see (Fig. 3).

(1) The bisectors of two opposite angles in each pair lie in a line but in opposite direc-

tions.

(2) The opposite angles in each pair of angles are equal.

s

a

b

c

d

x

z

u

z

y

y

Fig. 3 A 4-point tree with a degree-4 Steiner point.

Proof From the 120◦ condition we can assume that not all four points lie in a
plane and s is not lying on any surface of the tetrahedron abcd. Moreover, it is
sufficient that we analyze one pair of opposite angles, say ( 6 asb, 6 csd). Let sx be
the bisector of 6 asb and su be the bisector of 6 csd (see Fig. 3). Let sx, sy, sz be
the Cartesian axes.
(1) If 6 csz < 6 dsz′ where sz′ is the opposite direction of sz, then moving s along
sz results in fvar(asz) = fvar(bsz) = 0, fvar(csz) is negative and |fvar(csz)| >

|fvar(dsz)|. Hence, the total variation of L(T ) is negative, contradicting the Ts is
S-point optimality. On the other hand, if 6 csz > 6 dsz′, then moving s along z′

results in a similar contradiction. This proves 6 csz = 6 dsz′. Considering 6 csy and
6 dsy, the same argument leads to 6 csy = 6 dsy′ where sy′ is the opposite direction
of sy. Now, both 6 csz = 6 dsz′ and 6 csy = 6 dsy′ make the bisector su of 6 csd lies
in the same line of sx but in the opposite direction.
(2) Suppose 6 asb 6= 6 csd, say 6 asb < 6 csd, then moving s along sx reduces the
length L(Ts), again by the variational argument. Hence, 6 asb = 6 csd.
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2.3 Two informative examples

Now we give two examples to show that all three types of trees may exist for a
point set V and the statements in Theorems 1 and 2 are verified in these examples.
Example 1

a = [0.92181, 0.93547, 0.057891] , b = [0.73821, 0.9169, 0.35287],

c = [0.19627, 0.41027, 0.81317] , d = [0.40571, 0.89365, 0.0098613].

Then T1 = Tab-cd, T2 = Tad-bc, T3 = Tac-bd are full, degenerate of Type I, and
degenerate of Type II, respectively (Fig. 4). The lengths of these trees as well as
the coordinates of Steiner points and angles at Steiner points are given in Table
1.

a
b

c

d (=S     )

T1 

T2 

T3 

s
ads

cds

X

Y

Z

sab

bc 

Fig. 4 An example of 3 types of trees.

Table 1 Example 1: A configuration where the three different types of trees exist.

T1 (full) T2 (degenerate of Type I) T3 (degenerate of Type II)
LTi

1.638106774 1.641205510 1.6834288903
s1(x) .7216366352 .7306753086 .8820988691
s1(y) .9024587443 .9183281456 .6834288903
s1(z) .2994282599 .1798839567 .2794060773
s2(x) .5467595627
s2(y) .8351639592 sbc = b s = s1 = s2

s2(z) .2692329913
angle all 120◦ 6 sadbc = 120.29678609◦ 6 asb = 6 csd =155.7797741◦

all 120◦ at sad
6 asd = 6 bsc =92.63874341◦

6 asc = 6 bsd =92.40633766◦

Remark 2 Degenerate trees of Type II cannot be SMTs as proved in Theorem 1,
whereas a degenerate trees of Type I can be an SMT. In Example 1, suppose
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terminal c undergoes a small perturbation so that its x-coordinate increases by
0.03, then the three types of topology do not change but LT1

= 1.624807351 and
LT2

= 1.622907280. Hence, T2, a degenerate tree of Type I, becomes the SMT for
abcd.

Remark 3 Theorem 1 prevents all three trees being degenerate trees of Type II.
But two trees being degenerate trees of Type II is possible as shown in the example
below.

Example 2

a = [.28440859, .58279168, .43290660] , b = [.46922429, .42349626, .22594987],

c = [.64781123, .51551175, .57980687] , d = [.98833494, .33395148, .76036501].

Then both T1, T2 are degenerate trees of Type II but T3 as a degenerate tree of
Type I is optimal. The lengths of these trees as well as the coordinates of Steiner
points and angles at Steiner points are given in Table 2.

Table 2 Example 2: two degenerate trees of Type II and one degenerate tree of Type I.

T1(= T2) T3

LTi
1.402384883 1.312319415

s1(x) .30778963
s1(y) .548465793 sac = a

s1(z) .440453663
s2(x) .46703175
s2(y) s = s1 = s2 .46532777
s2(z) .35292462
angle 6 asb = 121.03873◦ 6 sbdac = 134.16087◦

6 asd = 141.10041◦ all 120◦ at sbd
6 asc = 72.91050◦

3 Finding Optimal 4-Point Trees in Euclidean Space

3.1 Equivalence, indicators and quasi-indicators in optimization problems

Suppose in an optimization problem the objective function is F (V, τ) where τ

is a variable and V is a parameter in domain Ω. Often F (V, τ) is complicated
and its optimal value is hard to found. To reduce the hardness of optimization
problems, recently a concept equivalence was introduced [30] and here we describe
a brief introduction to this concept. Suppose there is a different objective function
f(V, τ) with the same constraints such that F (V, τ) and f(V, τ) have the same
optimal point t∗, i.e., both functions achieve their minimum values at t∗. Then,
we say that the two functions are equivalent with respect to optimization although
their optimal values may not be equal, F (V, t∗) 6= f(V, t∗). If such an equivalence
does not always hold, then we can ask in how many cases does the equivalence
hold. That is, define the probability

q(f, F )
def
== Pr

�
tf − tF = 0 |V ∈ Ω

�
,
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where tf , tF are the optimal points of f(V, τ), F (V, τ) respectively. We call q(f, F )
the effectiveness index for equivalence of the objective function pair (F (V, τ), f(V, τ)).
If q(f, F ) = 1, then f(V, τ) is called an indicator of the original objective function
F (V, τ). However, if q(f, F ) 6= 1 but q(f, F ) is very close to one and if f(V, τ) is
simpler to optimize than F (V, τ), more precisely, if the computational complexity
of f(V, τ) is lower than F (V, τ), then in most practical cases f(V, τ) can be used
to replace F (V, τ) in order to find the optimal point t∗ and thus to solve the orig-
inal optimization problem. In that case f(V, τ) is a quasi-indicator of F (V, τ) (or
q-indicator for short).

3.2 Indicators of optimal 4-point trees in the Euclidean plane

In this section we consider the planar case for the indicators of optimal 4-point
trees. If all four points of V lie in a plane, then at most two of three full Steiner
topologies can be realized as Steiner trees. Suppose the four points in the plane
form a quadrilateral abcd, then the trees T1 = Tab-cd, T2 = Tac-bd can exist no
matter what type they are. There are several functions equivalent to identify the
lengths of optimal 4-point trees in the plane, and we call the equivalences rules
for identifying optimal 4-point trees. The first two rules (diagonal angle rule and
mid-edge rule) were found by Pollak [17] and Ollerenshaw [16] independently in
the same year. Instead of the original long complicated proofs we give two simple
geometrical proofs. Let o be the intersection of two diagonals ac and bd. Let φ(V, τi)
be the angles at o subtended by the opposite sides of abcd in Ti, i = 1, 2, i.e.,
φ(V, τ1) = 6 aob, φ(V, τ2) = 6 aod (Fig. 5).

Theorem 3 (Diagonal angle rule) If T1 and T2 both exist and are both full, then

LT1
(V, τ1) ≤ LT2

(V, τ2) if and only if φ(V, τ1) ≤ φ(V, τ2).

ao Φ(V,τ 1  )

b

c

d

abs
bcs

adscds

d2

d1

p2 p1

p

Fig. 5 Proof of the diagonal angle rule.
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Proof By the Melzak construction let d1 (d2) be the E-point with respect to ad (cd,
respectively), let p1 (p2) be the E-point with respect to ad2 (cd1, respectively) (Fig.
5). Note that the Melzak construction can be regarded as a process of extending
a tree by rotation. For T1, first the broken line cda rotates 60◦ anti-clockwise
around a, resulting in pd1a, then the line segment pd1 rotates 60◦ anti-clockwise
around d1, resulting in p1d1 and |bp1| = LT1

(Fig. 5). Similarly for T2, first the
broken line cda rotates 60◦ clockwise around c, resulting in pd2c, then the line
segment pd2 rotates 60◦ clockwise around d2, resulting in p2d2 and |p2b| = LT2

.
Because of the symmetry of the rotations, p1p2‖ac, |p1p2| = |ac|, and d lies on
the bisector of p1p2. This implies that LT1

(V, τ1) ≤ LT2
(V, τ2) if and only if b lies

on the same side of the bisector of p1p2 as a, i.e., if and only if φ(V, τ1) ≤ φ(V, τ2).

Let fie(V, τi) be the length of the mid-edge in Ti, i.e., fie(V, τ1) = |sabscd|,
fie(V, τ2) = |sadsbc|.

Theorem 4 (Interior edge rule) If T1 and T2 both exist and are both full, then

LT1
≤ LT2

if and only if fie(V, τ1) ≥ fie(V, τ2).

Du et. al. [5] gave a simple proof of Ollerenshaw’s mid-edge rule using a trans-
formation of the points in V . Essentially, their proof relies on an easily proved
lemma.

Lemma 2 Let a triangle have 3 edges u, v, w and the angle between u and v be 120◦.

Then

|u| + |v|/2 =
p

4w2 − 3v2/2

is a decreasing function of v.

Let fte(V, τi) be the sum of the lengths of the four terminal edges for the Steiner
topology τi. That is,

fte(V, τ1) = |asab|+ |sabb|+ |scdc|+ |scdd|, fte(V, τ2) = |asad|+ |sadd|+ |bsbc|+ |sbcc|.

By the above lemma the mid-edge rule can be geometrically re-proved as follows.

a
o

b

c

d

abs
bcs

adscds

p1

p2

b

oc

bcm

a

abm

admcdm

d

φ12

φ21

φ12

(a) (b)

Fig. 6 Proof of (a) the mid-edge rule and (b) the midpoint distance rule.
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Proof For T1 let eie be the length of the mid-edge sabscd and let ea be the length
of terminal edge asab. Similarly denote the lengths of other three terminal edge
as eb, ec, ed. Let asab extend to p1 such that cp1‖scdsab as shown in Fig. 6(a).
Similarly, extending bsab to p2 such that dp2‖scdsab. Then by Lemma 2

LT1
(V, τ1) = fte(V, τ1) + fie(V, τ1) = ea + ec + eie/2 + eb + ed + eie/2 (4)

= |ap1| + |cp1|
2

+ |bp2| + |dp2|
2

=

q
(−3e2

ie + 4|ac|2)
2

+

q
(−3e2

ie + 4|bd|2)
2

,

which is a decreasing function of the length of its interior edge. The theorem is
proved.

Because LTi
(V, τi) = fte(V, τi) + fie(V, τi) the following sum of terminal edges

rule is equivalent to the mid-edge rule.

Corollary 3 (Sum of terminal edges rule ) If T1 and T2 both exist and are both

full, then LT1
≤ LT2

if and only if fte(V, τ1) ≤ fte(V, τ2).

Re-denote the diagonal angle φ(V, τi) as φij , the angle subtending Ti with
respect to Tj , that is, (Fig. 6(b))

φ(V, τ1) = φ12 = 6 aob, φ(V, τ2) = φ21 = 6 aod = 180◦ − 6 aob.

Let fmd(V, τi) be the midpoint distance between two opposite sides, i.e., fmd(V, τ1) =
|mabmcd|, fmd(V, τ2) = |madmbc|. Recently, the following midpoint distance rule
was found [30].

Theorem 5 (Midpoint distance rule) If T1 and T2 both exist and are both full,

then LT1
≤ LT2

if and only if fmd(V, τ1) ≥ fmd(V, τ2).

Let fos(V, τi) be the sum of the lengths of opposite sides of Ti and fos2(V, τi)
be the sum of the squared lengths of opposite sides of Ti, that is,

fos(V, τ1) = |ab| + |cd|, fos(V, τ2) = |ad| + |bc|,

fos2(V, τ1) = |ab|2 + |cd|2, fos2(V, τ2) = |ad|2 + |bc|2.

In a private correspondence with the second author, Booth, R. S. gave the following
rule.

Theorem 6 (Sum of squared lengths of opposite sides rule) If T1 and T2 both

exist and are both full, then LT1
≤ LT2

if and only if fos2(V, τ1) ≤ fos2(V, τ2).

Proof Let the diagonals bd and ac meet at o. By the cosine law

|ab|2 = |ao|2 + |bo|2 − 2 cos(φ(V, τ1)) , |cd|2 = |co|2 + |do|2 − 2 cos(φ(V, τ1)),

|ad|2 = |ao|2 + |do|2 − 2 cos(φ(V, τ2)) , |bc|2 = |bo|2 + |co|2 − 2 cos(φ(V, τ2)). (5)

Because φ(V, τ1) + φ(V, τ2) = 180◦ the theorem holds by Theorem 3.
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Using fte, fie and fos2 , fmd we can define two ratios

ρter
def
==

fte

fie
, ρos2r

def
==

fos2

f2
md

,

called sum of terminal edges ratio and sum of square opposite sides ratio, respectively.
From Theorems 3, 4, 6 and 5 we obtain the following corollary immediately.

Corollary 4 If T1 and T2 both exist and are both full, then LT1
≤ LT2

if and only if

ρter(V, τ1) ≤ ρter(V, τ2), or if and only if ρos2r(V, τ1) ≤ ρos2r(V, τ2).

3.3 Quasi-indicators of optimal 4-point trees in Euclidean space

For the 4-point Steiner tree problem in the Euclidean plane E2, all 7 functions
φ, −fie, −fmd, fte, fos2 , ρter, ρos2r are equivalent to the tree length LT (V, τ) with
respect to the variable (topology) τ and to the parameter (4-point sets) V in the
domain (Euclidean plane) E2. However, when the 4-point Steiner tree problem
moves from E2 to E3, we must compare not only two but three trees T1, T2, T3.
Suppose T1 is optimal, then the equivalence can be restated as

LT1
= min

i=1,2,3
LTi

if and only if f(τ1) = min
i=1,2,3

f(τi), (6)

where f stands for any function equivalent to LT . It is easily seen that φ needs
to be redefined in space (see below) and it turns out that the other 6 equivalent
functions mentioned above are no longer equivalent to LT in E3. Moreover, even
in the plane the assumptions for the equivalence (both T1, T2 exist and are full)
are very strong assumptions and do not always hold. For instance, as shown in
Example 2, an SMT may be a degenerate tree of Type I, i.e., non-full. These facts
stimulated the authors of [30] to investigate whether efficient q-indicators exist
for 4-point trees in Euclidean space E3. For randomly generated 4-point sets they
tested fie, fmd and a function defined as

ρosr
def
==

fos

fmd
,

which is called the sum of opposite sides ratio in this paper (but called midpoint

distance ratio in [30]). That is,

ρosr(τ1) =
|ab| + |cd|
|mabmcd| , ρosr(τ2) =

|ad| + |bc|
|madmbc|

, ρosr(τ3) =
|ac| + |bd|
|macmbd| .

Note that the definition of ρosr is similar to ρos2r, however, whereas ρos2r is an
indicator for planar 4-point trees, ρosr is not. Here is a simple counterexample. Let
a, b, c, d be 4 terminals in the plane, and the diagonals satisfy ac ⊥ bd. Suppose
|ao| = |do| = 1, |bo| = |co| = ε << 1. Then it is easy to see that T1 and T2 both exist
and are both full, by the diagonal angle rule LT1

= LT2
=

√
2(1+

√
3)(1+ ε)/2 but

fos(V, τ1) = 2
√

1 + ε2 >
√

2(1 + ε) = fos(V, τ2).
We can also compare ρosr with fie. For T1, if the midpoint line mabmcd is

regarded as a representation of the mid-edge sabscd, then the corresponding rep-
resentations of the four terminal edges should be amab, bmab, cmcd, dmcd, and the
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sum of their lengths is |ab| + |cd| = fos(V, τ1). Hence, ρosr can be regarded as a de-
formation of fie. However, although fie is an indicator for planar 4-point trees, ρosr

is not. Despite ρosr not being an indicator like ρos2r and fie in the Euclidean plane,
it was interesting to find by computational experiments [30] that ρosr is the best
q-indicator in E3. Below we extend (both in the number of tested q-indicators and
in the size of experimental data) the computational experiments on q-indicators
to confirm this result.

Before describing the new computational experiments we need to first precisely
redefine the diagonal angle φ for spatial 4-point trees. In E3 we need to make
comparisons between 3 pairs of trees (T1, T2), (T2, T3), (T1, T3). Note that any two
lines in space are parallel to a plane and we call the angle between their projections
on the plane the intersecting angle of the two spatial lines. For a tetrahedron abcd

in space, there are 3 pairs of opposite sides and 6 midpoints. To compare T1 and
T2, look at the plane that is parallel to their diagonals ac and bd, i.e., the opposite
sides of the third tree T3. Without loss of generality we may assume that the plane
is the XY -plane, ac lies on the x-axis and the z-axis is the normal perpendicular
to both ac and bd as shown in Fig. 7. It is easy to see that the four midpoints

c

d

a

b

O mac

mbd

mab

mcd mad

mbc

φ X

YZ

φ
12

12

φ
13

φ
23

h

d 

b

Fig. 7 Diagonal angles in space.

mab, mcd, mbc, mad constitute a parallelogram lying on a plane that is parallel to
the XY -plane.

Theorem 7 A tetrahedron abcd in space has three parallelograms mabmbcmcdmad,

mabmbdmcdmac, madmbdmbcmac that are parallel to three pairs of opposite sides

(ac, bd), (bc, ad), (ab, cd) respectively. Let φ12, φ13, φ23 be the three angles of the paral-

lelograms as shown in Fig. 7. Then we have

(1) The three angles φ12, φ13, φ23 equal the intersecting angles of the three pairs of

opposite sides (ac, bd), (bc, ad), (ab, cd) respectively.

(2) For φ12

φ12 ≤ 90◦ ⇔ |ab|2 + |cd|2 ≤ |ad|2 + |bc|2 (7)

φ12 ≤ 90◦ ⇔ |mabmcd| ≥ |madmbc| (8)

φ12 ≤ 90◦ ⇔ |ab|2 + |cd|2
|mabmcd| ≤ |ad|2 + |bc|2

|madmbc|
. (9)
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Similar statements hold for φ13, φ23.

Proof We need only to prove the statements for φ12 and the tree pair (T1, T2). The
other statements hold similarly.
(1) The intersecting angle of ac and bd is the angle formed by ac and b′d′, the pro-
jection of bd on the XY -plane. Since mabmbc ‖ ac, mabmad ‖ bd, φ12 = 6 madmabmbc

is the intersecting angle of ac and bd as in the planar case (Fig. 6(b)).
(2) Let h be the distance between ac and bd. Since bb′ is perpendicular to the
parallelogram mabmbcmcdmad,

|ab|2 = |ab′|2 + |bb′|2 = |ab′|2 + h2 = |ao|2 + |b′o|2 − 2 cos(φ12) + h2.

We have similar equations for |cd|2, |ad|2 and |bc|2 as in Equation (5). As a com-
mon term h2 is added in each expression, Equivalence (7) holds. Using a similar
argument and from the planar case, we have Equivalence (8) by Theorem 5 and
Equivalence (9) by Corollary (4).

Since φ21 = 180◦ − φ12, φ31 = 180◦ − φ13, φ32 = 180◦ − φ23, in terms of
φ12, φ13, φ23 the logical statement in Theorem 3 needs to be replaced with a com-
bination of three logical statements for 4-point minimal trees in E38<: (LT1
≤ LT2

)&(LT1
≤ LT3

) if and only if (φ12 ≤ 90◦)&(φ13 ≤ 90◦), or
(LT2

≤ LT1
)&(LT2

≤ LT3
) if and only if (φ12 ≥ 90◦)&(φ23 ≤ 90◦), or

(LT3
≤ LT1

)&(LT3
≤ LT2

) if and only if (φ13 ≥ 90◦)&(φ23 ≥ 90◦).
(10)

This combination of logical statements is denoted by fφ.

3.4 Computational experiments for q-indicators of optimal 4-point trees in space

In our new computational experiments, the 8 functions

fte, fie, ρter, fos2 , fmd, ρos2r, ρosr, fφ

defined in Subsections 3.2 and 3.3 are tested for randomized 4-point trees in space.
The following are taken into consideration in the design of the test.

1. Two data models were used. In the cube model, all four points were uniformly
distributed in a unit cube. That is, all coordinates of points were randomly gen-
erated with uniform distribution in the interval [0, 1]. In the tetrahedron model, all
four points were uniformly distributed in a unit tetrahedron. Let

a∗ = [0, 0, 0], b∗ = [1, 0, 0], c∗ =

�
1

2
,

√
3

2
, 0

�
, d∗ =

�
1

2
,

√
3

6
,

√
2√
3

�
.

Then a∗b∗c∗d∗ is a regular tetrahedron with unit side length which is half of a
skew unit cube. A random point in this model was

r1 ·
−−→
a∗b∗ + r2 ·

−−→
a∗c∗ + r3 ·

−−→
a∗d∗,

where r1, r2, r3 were random numbers with uniform distribution in the interval
[0, 1] satisfying r1 + r2 + r3 ≤ 1.
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2. For the cube model, 8 groups of point sets were generated such that each
group contained 1000 random 4-point sets. For the tetrahedron model three groups
of point sets were generated in the same way. Because we found that there was no
essential difference between the two models we did not test more groups for the
tetrahedron model. Therefore, 11000 random 4-point sets were tested in total.

3. The average effectiveness indices of these q-indicators were first computed
for each group, and then the averages (arithmetic means) over all groups µ were
computed.

The test results are listed in Table 3 followed by an analysis of the test results.

Table 3 Effectiveness indices of q-indicators.

model-group fte fie ρter fos2 fmd ρos2r ρosr fφ

cube-1 0.992 0.987 0.987 0.973 0.973 0.973 0.977 0.973
-2 0.989 0.983 0.983 0.969 0.969 0.969 0.978 0.969
-3 0.994 0.988 0.988 0.972 0.972 0.972 0.982 0.972
-4 0.991 0.99 0.99 0.976 0.976 0.976 0.991 0.976
-5 0.992 0.991 0.991 0.977 0.977 0.977 0.993 0.977
-6 0.993 0.993 0.993 0.978 0.978 0.978 0.994 0.978
-7 0.995 0.994 0.994 0.976 0.976 0.976 0.991 0.976
-8 0.997 0.996 0.996 0.969 0.969 0.969 0.989 0.969

tetrahedron-9 0.990 0.988 0.988 0.975 0.975 0.975 0.987 0.975
-10 0.990 0.985 0.986 0.972 0.972 0.972 0.984 0.972
-11 0.991 0.983 0.984 0.970 0.970 0.970 0.982 0.970

(arithmetic mean) µ 0.9922 0.9889 0.9891 0.9734 0.9734 0.9734 0.9862 0.9734
(standard deviation) σ 0.0004 0.0018 0.0015 0.0010 0.0010 0.0010 0.0013 0.0010

1. First, it is clear that the effectiveness indices of fmd, fos2 , ρos2r and fφ

in each group are equal. Note that fmd, fos2 , ρos2r are equivalent to fφ in the
Euclidean plane (see Theorems 5, 6 and Corollary 4) and that their definitions
are independent of the dimension, hence, they are still equivalent to fφ given the
logical statement about fφ in Theorem 3 is extended to the logical statements 10.
Hence, the effectiveness indices of the 4 quasi-indicators in space can be regarded
as a numerical validation of Theorem 7.

2. The standard deviation is less than 0.18% for all tested q-indicators, in
particular the standard deviation of fte is only 0.04%. Hence, we can say that the
tests are stable and reliable.

3. fte has the highest effectiveness index followed by fie and ρter. However, as we
have to first find the Steiner points to compute these functions, their computational
complexities (in terms of the number of arithmetic operations) are as high as
the original 4-point tree problem and cannot be used as q-indicators in practice.
Consequently, ρosr is the best practical q-indicator.

4. As argued above ρosr is not equivalent to LT in the plane although ρos2r is.
However, the experiments show that in space ρosr has a higher effectiveness index
than ρos2r. This is surprising and difficult to explain.

5. The point sets are randomly generated and of all the 3 × 11000 trees about
64% trees are degenerate trees of Type II. We checked that none of these trees
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with degree-4 Steiner points was optimal. This can be regarded as a numerical
validation of Theorem 1.

Remark 4 Note that the coordinates of the midpoint of a line are a linear combi-
nation of the coordinates of the two endpoints of the line and ρosr depends only
on the coordinates of the 4 terminals. Hence, we can reasonably claim that the op-
posite sides ratio is the best q-indicator for 4-point trees in any Euclidean d-space
for d ≥ 3.

Remark 5 A probability vector in Euclidean d-space is a vector whose sum of
components is one. Hence, a probability vector space is a d−1 dimensional subspace
in Ed. Hence, the Steiner tree problem in a probability vector space is no longer an
unconstrained optimization problem but has a simple linear constraint:

Pd
k=1 sk =

1 for any Steiner point s = [s1, s2, . . . , sd]. Because this constraint does not affect
ρter we believe that ρter is still the best q-indicator for 4-point trees in a probability
vector space.

4 An Application of Quasi-indicators in S4pT Technique

As stated in the first section, Introduction and Motivation, the simplest tree
rearrangement technique, called the Swapping 4-point Topology/Tree (S4pT ) tech-
nique, repeatedly replaces a non-optimal 4-point subtree with the optimal 4-point
tree on the same 4 nodes. In the last section we pointed out that computing the
length of a 4-point tree is algebraically unsolvable and time-consuming compared
with computing the q-indicator ρosr which is linear in the coordinates of the 4
nodes. We show the details of the S4pT technique in an example, next, and show
how ρosr is used in the S4pT technique.

Example

Let Q be the set of 14 DNA sequences studied in [7] and [26], then the distrib-
utions of nucleotides A, G, C, T in these species comprise a set V of 14 probability
vectors as shown in the following table:

Table 4 A set of probability vectors built from 14 DNA sequences.

[ A G C T ]
Marsupial Mole t1=[0.2350, 0.3026, 0.2368, 0.2256]

Wombat t2=[0.2199, 0.3158, 0.2425, 0.2218]
Rodent t3=[0.2105, 0.3139, 0.2462, 0.2293]

Elephant Shrew t4=[0.2030, 0.2989, 0.2707, 0.2274]
Elephant t5=[0.1917, 0.3120, 0.3064, 0.1898]

Whale t6=[0.1917, 0.3158, 0.2895, 0.2030]
Dolphin t7=[0.1974, 0.3101, 0.2951, 0.1974]

Pig t8=[0.2049, 0.3064, 0.3008, 0.1880]
Horse t9=[0.1880, 0.3196, 0.3045, 0.1880]
Bat t10=[0.1955, 0.3101, 0.2801, 0.2143]

Insectivore t11=[0.1861, 0.3045, 0.3026, 0.2068]
Human t12=[0.1842, 0.3365, 0.3026, 0.1767]

Sea Cow t13=[0.2049, 0.2989, 0.2876, 0.2087]
Hyrax t14=[0.2105, 0.3008, 0.2801, 0.2087]
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The phylogenetic tree T on Q, regardless of the method used in its construction,
is an optimal full Steiner tree. Depending on the method, the data used for the
construction is different. For example, the data used is the distances between the
sequences if the construction method is the Distance Matrix method. In particular,
if the distances are computed without a statistical model, then the distance is the
Hamming distance, i.e. the l1 metric. However, we can look at the problem using
the Euclidean distance, i.e. l2 distance. As mentioned in Section 1, since the size
of V is greater than 10, branch-and-bound algorithms cannot solve the ESMT
problem on V in a reasonable time. We now describe how to find an S4pT-optimal
ESMT on the set V of 14 terminals ti, 1 ≤ i ≤ 14. Suppose the initial tree T 0 on V

generated by a certain method is as shown in Fig. 8(a), the planar representation
of the tree, and the edge lengths can be clearly seen in its ‘linearized’ image — Fig.
8(b). There are 11 interior edges in T 0, consequently there are 11 4-point subtrees
in T 0. In Table 5 all sets of the endpoints (a, b, c, d), the q-indicators ρosr of the
current 4-point subtrees Tab-cd in T 0, and their associated other two subtrees are
listed.

Fig. 8 Initial tree T 0 on 14 probability vectors.

Note that in each row in the table the minimum ρosr is in boldface and there
are three 4-point subtrees in T 0 whose ρosr are not optimal. For example, the 4-
point tree Tt6t7-t8s9

with mid-edge s3s6 is non-optimal, and swapping the 4-point
subtree Tt6t7-t8s9

with Tt6s9-t7t8 we can compose a new topology and construct a
new tree T 1 on V that is shorter than T 0.

There are some remarks to note on the application of ρosr to T 0 :

1. From Fig. 8(b) we can see that the edge lengths of the 4 mid-edges s3s6, s7s10, s9s11

and s11s12 are all zero. These cases are all different and discussed in the points
below:
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Table 5 Quasi-indicators ρosr of 4-point subtrees in the initial tree T 0.

mid-edge endpoints (a, b, c, d) ρosr(Tab-cd) ρosr(Tac-bd) ρosr(Tad-bc)
s1s5 (t1, t2, t3, s8) 1.7799 3.4611 3.4651
s2s9 (t10, t11, s6, s11) 1.8658 2.8935 3.1202
s3s6 (t6, t7, t8, s9) 2.2287 9.3285 1.8504

s4s7 (t13, t14, s10, t5) 0.9738 8.9338 4.4759
s5s8 (s1, t3, t4, s10) 1.1355 4.9441 4.4224
s6s9 (s3, t8, s2, s11) 1.8631 2.3446 4.7653
s7s10 (t5, s4, s12, s8) 3.7907 1.0891 11.0271
s8s10 (s5, t4, s12, s7) 0.6873 6.6774 6.5972
s9s11 (t9, s12, s2, s6) 2.2983 2.7651 2.3624
s10s12 (t12, s11, s7, s8) 1.9332 2.3128 6.1184
s11s12 (t9, s9, t12, s10) 6.4501 0.8584 4.8072

2. The 4-point tree Tt5s4-s12s8
is of Type II degenerate tree with a degree-4 S-

point s3s6. By Theorem 1 it is not optimal.

3. The 4-point tree Tt6t7-t8s9
is not optimal but of Type I since s3 = t7, i.e. the

S-point s3 collapses into a terminal t7.

4. From Table 5 we can see that the q-indicator ρosr detects the non-optimal
mid-edge s11s12 but does not detect (t9, s9, t12, s10) the non-optimal mid-edge
s9s11. The reason is the mid-edges s9s11 and s11s12 are adjacent and three
S-points s9, s11, s12 collapse together forming a degree-5 S-point. Hence, this
case is not indicated by the q-indicator ρosr because it is not within the scope
of q-indicators for 4-point trees.

5. An important fact is that the two 4-point trees Tt6t7-t8s9
and Ts12s4

-t5t8 are
disjoint. Hence we can apply the swapping technique to the two 4-point subtrees
simultaneously which can speed up the convergency of tree length. In fact, we
did so in the reconstruction of the S-tree from T 0 to T 1.

After 10 swaps we obtained an S4pT-optimal ESMT on V . The lengths of the
trees T 0, T 1, · · · form a decreasing curve as shown in Fig. 9.

The S4pT-optimal ESMT T 10 is shown in Fig. 10. Table 6 lists the q-indicators
ρosr of the current 4-point subtrees Tab-cd in T 10, and their associated other two
subtrees. From the table it is clearly shown that all 4-point subtrees in T 10 are
optimal.

Table 6 Quasi-indicators ρosr of 4-point subtrees in the S4pT-optimal tree T 10.

mid-edge endpoints (a, b, c, d) ρosr(Tab-cd) ρosr(Tac-bd) ρosr(Tad-bc)
s1s5 (t1, t2, t3, s8) 1.7897 3.4626 3.4666
s2s3 (s4, t10, t6, s9) 1.2444 9.6024 3.4121
s12s6 (s7, t8, s9, t7) 1.5000 3.1985 5.2415
s4s10 (t13, s2, s8, t14) 2.2598 4.1401 2.2961
s5s8 (s1, t3, t4, s10) 0.8791 8.8972 5.2739
s9s3 (s2, t6, s6, t11) 2.1630 3.2996 3.0778
s2s4 (t10, s3, s10, t13) 1.4013 3.1242 7.8159
s8s10 (s5, t4, s4, t14) 1.2051 5.2194 3.6937
s9s6 (s12, t7, s3, t11) 1.8105 4.3280 2.8122
s12s7 (t8, s6, s11, t5) 1.4188 5.6147 3.5784
s11s7 (t9, t12, t5, s12) 1.4284 4.4996 3.4101
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Fig. 9 Decreasing curve L(T i) 0 ≤ i ≤ 10.

Fig. 10 S4pT-optimal tree T 10 on 14 probability vectors.

Remark 6 From the planar tree T 10 (Fig. 10) we can see there are two terminal
edges t7s6 and t9s11 of zero length, that is, the two terminals t7, t9 collapse into
their adjacent S-points and the 4-point subtrees are of Degenerate Type I. As
argued in Section 2, 4-point tree of Degenerate Type I can be optimal. Because
the probability vectors in 4d-space have only three independent variables. Hence,
taking the first three components as Cartesian coordinates, T 10 can be represented
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Fig. 11 Decreasing curve L(T i) 0 ≤ i ≤ 10.

as a tree in Euclidean 3d-space. From the spacial representation of T 10 (Fig. 10) it
is clearly seen that the two terminals t7, t9 cut T 10 into 3 full subtrees. The angles
at t7 = s6, t9 = s11 are greater than 120◦ while all angles at other S-points are
equal to 120◦.
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