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HYPERBOLICITY CONES OF ELEMENTARY SYMMETRIC

POLYNOMIALS ARE SPECTRAHEDRAL

PETTER BRÄNDÉN

Abstract. We prove that the hyperbolicity cones of elementary symmetric
polynomials are spectrahedral, i.e., they are slices of the cone of positive semi-
definite matrices. The proof uses the matrix–tree theorem, an idea already
present in Choe et al. hyperbolic polynomials and hyperbolicity cones and
spectrahedral cones and elementary symmetric polynomials and matrix-tree
theorem

1. Introduction and main results

A homogenous polynomial h(x) ∈ R[x1, . . . , xn] is hyperbolic with respect to a
vector e ∈ R

n if h(e) 6= 0 and for all x ∈ R
n, the univariate polynomial t 7→

h(x + te) has only real zeros. The hyperbolicity cone, Λ+(h, e), is the closure of
the connected component of {x ∈ Rn : h(x) 6= 0} which contains e. Hyperbolicity
cones are convex, and if e′ is in the interior of Λ+(h, e), then h is hyperbolic
with respect to e′ and Λ+(h, e) = Λ+(h, e

′), see e.g. [3, 4, 8]. The notion of
hyperbolic polynomials originates from PDE–theory and the work of Petrovsky and
G̊arding. However, during the last fifteen years there has been increasing interest
in hyperbolic polynomials from unexpected areas such as combinatorics and convex
optimization [2, 4, 8]. Optimization over hyperbolicity cones was first considered
by Güler [4] and a rich theory for hyperbolic programs has been developed [4, 8, 9]
which extends many features of semidefinite programming.

An important open question regarding hyperbolic programming concerns the
generality of hyperbolicity cones. The most fundamental example of a hyperbolic
polynomial is the determinant h(x) = det(X), where X = (xij)

m
i,j=1 is the sym-

metric m × m matrix of m(m + 1)/2 variables and e = I is the identity matrix.
Hence the cone of positive semidefinite m×m matrices is a hyperbolicity cone, and
it follows that so are spectrahedral cones, i.e., cones of the form

{

x ∈ R
n :

n
∑

i=1

xiAi is positive semidefinite

}

, (1.1)

where Ai, 1 ≤ i ≤ n, are symmetric m×m matrices such that there exists a vector
(y1, . . . , yn) ∈ Rn such that

∑n

i=1 yiAi is positive definite. It has been speculated
whether the converse is true [5, 8].
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2 P. BRÄNDÉN

Conjecture 1.1 (Generalized Lax conjecture). All hyperbolicity cones are spectra-
hedral i.e., of the form (1.1).

The evidence in favor of Conjecture 1.1 are not overwhelming:

(1) It is true for hyperbolic polynomials in three variables [5, 6],
(2) It is true for quadratic polynomials [7].

Stronger conjectures that imply Conjecture 1.1 were recently disproved in [1], see
also [7].

In this note we are concerned with the hyperbolicity cones of the elementary
symmetric polynomials :

ek(x1, . . . , xn) =
∑

1≤i1<···<ik≤n

xi1 · · ·xik .

They are hyperbolic with respect to 1 = (1, . . . , 1)T , and their hyperbolicity cones
contain the positive orthant. Zinchenko [12] studied the hyperbolicity cones of el-
ementary symmetric polynomials and proved that they are spectrahedral shadows,
i.e., projections of spectrahedral cones. Sanyal [10] proved that the hyperbolic-
ity cone of en−1(x1, . . . , xn) is spectrahedral and conjectured that all hyperbolicity
cones of elementary symmetric polynomials are spectrahedral, although it is sub-
sumed by Conjecture 1.1. We will prove this conjecture.

Theorem 1.2. Hyperbolicity cones of elementary symmetric polynomials are spec-
trahedral.

Note that the hyperbolicity cone, with respect to e = (e1, . . . , en), of h(x) is spec-
trahedral if there is a pencil

∑n

i=1 xiAi of symmetric matrices (such that
∑n

i=1 eiAi

is positive definite) and a homogeneous polynomial q(x) such that

q(x)h(x) = det

(

n
∑

i=1

xiAi

)

, (1.2)

and Λ+(q, e) ⊇ Λ+(h, e). Our idea for proving Theorem 1.2 was to use the matrix–
tree theorem (Theorem 2.1 below) to construct a graph for which the spanning
tree polynomial is a multiple of the elementary symmetric polynomial in question.
In the process we became aware of that the same idea was already present in [2,
Section 9.1] where it was observed that the elementary symmetric polynomials are
factors of determinantal polynomials. However, to prove Theorem 1.2 we need to
know the other factors, and that Λ+(q, e) ⊇ Λ+(h, e) holds in (1.2).

Recall that a cone is polyhedral if it is the intersection of a finite number of
half-spaces, i.e., if it is the hyperbolicity cone of a polynomial of the form h(x) =
ℓ1(x) · · · ℓd(x) where ℓj(x) is a linear form for 1 ≤ j ≤ d. If h is hyperbolic with
respect to e = (e1, . . . , en)

T , then

Deh(x) =
n
∑

i=1

ei
∂

∂xi

h(x)

is hyperbolic with respect to e and Λ+(Deh, e) ⊇ Λ+(h, e), see e.g. [3, 8]. Of course
polyhedral cones are spectrahedral and it is natural to ask if the derivative cones
Λ+(D

k
e
h, e) are also spectrahedral for 1 ≤ k ≤ d− 1. For k = 1 this was answered

to the affirmative by Sanyal [10]. Using Theorem 1.2 we settle the remaining cases.
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Corollary 1.3. The derivative cones of polyhedral cones are spectrahedral, i.e.,
if h(x) = ℓ1(x) · · · ℓd(x) and h(e) 6= 0, then Λ+(D

k
e
h, e) is spectrahedral for each

1 ≤ k ≤ d− 1.

Proof. Since
Dk

e
h(x) = k!h(e)ed−k(ℓ1(x), . . . , ℓd(x)),

see e.g. [8, Proposition 18], the corollary follows immediately from Theorem 1.2.
� �

2. Proof of Theorem 1.2

Let G = (V,E) be a finite graph where V is the set of vertices, E is the set of
edges, and each edge connects two distinct vertices. We allow for more than one
edge connecting two distinct vertices. The graphs considered here are connected,
i.e., between each pair of distinct vertices there is a path connecting them. Assign
variables x = {xe}e∈E to the edges. Recall that a spanning tree is a maximal
(with respect to inclusion) subset T of E that contains no cycle, i.e., a minimal
(with respect to inclusion) set T ⊆ E such that the graph (V, T ) is connected. The
spanning tree polynomial is defined as

TG(x) =
∑

T

∏

e∈T

xe,

where the sum is over all spanning trees in G, see Fig. 1. Suppose V = [n] :=

1 2

3

a

c
bd

TG(x) = xaxb + xaxc + xaxd + xbxc + xbxd

LG(x) =





xa + xc + xd −xa −xc − xd

−xa xa + xb −xb

−xc − xd −xb xb + xc + xd





Figure 1. A graph G, its spanning tree polynomial and its
weighted Laplacian.

{1, . . . , n} and let {δi}
n
i=1 be the standard bases of Rn. The weighted Laplacian of

G is defined as
LG(x) =

∑

e∈E

xe(δe1 − δe2)(δe1 − δe2)
T ,

where e1 and e2 are the vertices incident to e ∈ E. In other words if LG(x) =
(vij(x))

n
i,j=1, then vii(x) =

∑

e xe, where the sum is over all edges containing i,

and if i 6= j, then vij(x) = −
∑

e xe, where the sum is over all edges connecting i
and j, see Fig. 1 for an example. We refer to [11, Theorem VI.29] for a proof of
the next classical theorem that goes back to Kirchhoff and Maxwell.

Theorem 2.1 (Matrix–tree theorem). For i ∈ V , let LG(x)ii be the matrix obtained
by deleting the column and row indexed by i in LG(x). Then

TG(x) = det(LG(x)ii).

Note that the matrix–tree theorem implies that the hyperbolicity cone of any
connected graph G is spectrahedral. Indeed LG(x)ii is a pencil of positive semidef-
inite matrices, and since detLG(1)ii is equal to the number of spanning trees of G
we see that LG(1)ii is positive definite.
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Remark 2.2. Let G = Kn+1, the complete graph on n+ 1 vertices. Then

LG(x)(n+1)(n+1) = (vij)
n
i,j=1,

where vij = −xij if i 6= j and vii = xi(n+1)−xii+
∑n

j=1 xij . Hence the hyperbolicity

cone of TG(x) is linearly isomorphic to the cone of positive semidefinite n× n ma-
trices. Thus the generalized Lax conjecture is equivalent to that each hyperbolicity
cone is a slice of a hyperbolicity cone of some spanning tree polynomial. This is
the reason for why we believed that at least for elementary symmetric polynomials
one would be able to use the matrix–tree theorem to deduce that the hyperbolicity
cones are spectrahedral.

The plan is to construct polynomials, Hk,k(x), which are obtained from the span-
ning tree polynomials of graphs Gk,k by linear changes of variables. We will prove
that Hk,k(x) contains the elementary symmetric polynomial ek+1(x) as a factor,
and that the hyperbolicity cones of the other factors contain the hyperbolicity cone
of ek+1(x). To do this we explicitly compute Hk,k(x) (in Lemma 2.4) and observe
that all factors except ek+1(x) are directional derivatives of ek(x). We begin with
a few technical definitions that are essential to the recursive construction used to
compute Hk,k(x).

Let {xj}
∞
j=1 be independent variables, and for a finite non-empty set S ⊂ Z+ :=

{1, 2, . . .} let

ek(S) =
∑

T⊆S

|T |=k

∏

j∈T

xj ,

be the kth elementary symmetric polynomial in {xj}j∈S . For k ≥ 1 let

qk(S) =
ek(S)

ek−1(S)
.

From the recursions

kek(S) =
∑

j∈S

xjek−1(S \ {j}) and ek(S) = ek(S \ {j}) + xjek−1(S \ {j}),

we obtain

kqk(S) =
∑

j∈S

xjek−1(S \ {j})

ek−1(S \ {j}) + xjek−2(S \ {j})

=
∑

j∈S

xjqk−1(S \ {j})

xj + qk−1(S \ {j})
, (2.1)

for all k ≥ 2. It is no accident that (2.1) is reminiscent of the operation (C) on
spanning tree polynomials below.

(A) If we replace an edge e ∈ E between vertices i and j with k parallel edges
e1, . . . , ek between i and j, then the resulting polynomial is obtained by
setting xe = xe1 + · · ·+ xek in TG.

(B) If an edge e between i and j is replaced by a path i, e′, k, e′′, j, then the
resulting polynomial is obtained by multiplying by xe′ + xe′′ and setting

xe =
xe′xe′′

xe′ + xe′′

in TG(x).
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(C) By (A) and (B), if we replace an edge e between i and j by a series parallel
graph as in Fig. 2 with edge-variables x1, y1, . . . , xm, ym, then the resulting
polynomial is obtained by multiplying by

∏m

j=1(xj + yj) and setting

xe =

m
∑

j=1

xjyj
xj + yj

,

in TG(x). Indeed, replace e by m parallel edges (using (A)) and then split
each new edge in two using (B).

i •

•
x1

xm

y1

ym

•

...

•

•

• j· · · · · ·

Figure 2. The graph in (C).

If we set yj = q1([m] \ {j}) = e1([m] \ {j}) in Fig. 2, then by (C) and (2.1) we
obtain the polynomial

2q2([m])

m
∏

j=1

(xj + e1([m] \ {j})) = 2e2(x)e1(x)
m−1,

which by the matrix–tree theorem proves that e2(x)e1(x)
m−1 is a determinantal

polynomial, and that the hyperbolicity cone of e2(x) is spectrahedral. We now
extend this construction to higher degrees.

We recursively construct a family of graphs, {Gn,k}, for integers n ≥ k ≥ 0,
using (C). Let Gn,0 = s •−• z for all n ∈ Z+, i.e., the graph with two vertices s
and z connected by an edge. For k > 0, the graph Gn,k is constructed from Gn,k−1

by replacing each edge in Gn,k−1 that contains z by a graph as in Fig. 2, with
m = n − k. We will need a more explicit description of Gn,k. For n ≥ k ≥ 1,
Gn,k is the graph with vertices consisting of two designated vertices s and z, and
all words w = w1w2 · · ·wℓ such that 1 ≤ ℓ ≤ k, wi ∈ [n] for all i, and wi 6= wj for
all 1 ≤ i < j ≤ ℓ. The edges in Gn,k are between the vertices:

(1) s and i for all 1 ≤ i ≤ n;
(2) w1 · · ·wi−1 and w1 · · ·wi−1wi for all 2 ≤ i ≤ k;
(3) w1 · · ·wk and z,

see Fig. 3.
Let n be fixed. For all r ≥ k define a rational function Hk,r(x), by setting the

edge-variables in TGn,k
as:

(a) r!xi if as in 1;
(b) (r − i+ 1)!xwi

if as in 2;
(c) (r − k + 1)!qr−k+1({w1, . . . , wk}

′), where S′ = [n] \ S, if as in 3.
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s

1

2

3

z s

1

2

3

12

13
21

23
31

32

z

Figure 3. The graphs G3,1 and G3,2.

Note that if k = 0 in (c), then the edge variable is

(r + 1)!qr+1([n]) = (r + 1)!
er+1(x)

er(x)
.

We are only interested in Hk,k(x), but to get the recursion running smoothly we
need the extra parameter r.

Example 1. Let us compute H2,2(x) for n = 4. For each j = 1, 2, 3, 4, replace the
pieces between j and z in G4,2 by a new edge using (C) and (2.1), see Fig. 4. The
new edge variable for the edge {4, z} is

x3(x1 + x2)

x3 + x1 + x2
+

x2(x1 + x3)

x2 + x1 + x3
+

x1(x2 + x3)

x1 + x2 + x3
= 2q2([4] \ {4}),

and thus 2q2([4]\{j}) for the edge {j, z}. We are left with a graph as in Fig. 2 with
edge weights 2xj and 2q2([4] \ {j}), respectively. If we replace this graph by a new
edge using (C) and (2.1) we arrive at the graph s •−• z with edge weight 6q3([4]).
By multiplying with the factors for each time (C) was used we arrive at

H2,2(x) = 6q3([4])

4
∏

j=1

(

2xj + 2
e2([4] \ {j})

e1([4] \ {j})

) 4
∏

j=1

e1([4] \ {j})
3

= 96e3([4])e2([4])
3

4
∏

j=1

e1([4] \ {j})
2.

4

41

42

43

z

x1 + x2

x2 + x3x1

x3

x22x4
x1 + x3

Figure 4. A piece of G4,2 with k = r = 2.
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Let

γkr =
∏

S∈( [n]
n−k)

er−k(S)
k! =

∏

S∈([n]
k )

er−k(S
′)k!,

where 0 ≤ k ≤ r ≤ n and
(

[n]
j

)

= {U ⊆ [n] : |U | = j}.

Lemma 2.3. Let 1 ≤ k ≤ r ≤ n− 1 be integers. Then there are positive constants
Ci,r, 0 ≤ i ≤ r, such that

H0,r(x) = C0,r
er+1(x)

er(x)
,

and

Hk,r(x) = Ck,rHk−1,r(x)
(γ(k−1)r)

n−k+1

γkr
,

for k > 0.

Proof. The first statement follows immediately from the definitions. For k > 0
consider the graph Gn,k with edge variables as described in (a), (b) and (c) above.
Now consider a right-most piece of this graph as depicted in Fig. 5. If we replace

w1 · · ·wk−1 •

•
w1 · · ·wk−1wk

(r − k + 1)!xwk
(r − k + 1)!qr−k+1({w1, . . . , wk}

′)
•

...

•

•

• z· · · · · ·

Figure 5. A right-most piece of Gn,k.

this piece by an edge using (C) and (2.1), then the new edge variable is (r − (k −
1) + 1)!qr−(k−1)+1({w1, . . . , wk−1}

′) which is the correct edge variable as in (c) for
Gn,k−1. If we do this for each rightmost subgraph such as in Fig. 5 we thus get

Hk,r(x) = Qk,r(x)Hk−1,r(x),

where Qk,r(x) is the product of all the factors that come from the operations as in
(C). Modulo constants, for each word w1 · · ·wk we get a factor

xwk
+ qr−k+1({w1, . . . , wk}

′) =
er−k+1({w1, . . . , wk−1}

′)

er−k({w1, . . . , wk}′)
.

For each S ∈
(

[n]
k−1

)

, the numerator er−k+1(S
′) will appear exactly (k−1)!(n−k+1)

times in the product, since there are (k − 1)! ways to linearly order S to obtain
a word w1 · · ·wk−1, and then n − k + 1 choices for wk. This accounts for the

term (γ(k−1)r)
n−k+1. Similarly, for each S ∈

(

[n]
k

)

the denominator er−k(S
′) will

appear exactly k! times, since there are k! ways to linearly order S to obtain a word
w1 · · ·wk. This accounts for the term γkr in the denominator. � �



8 P. BRÄNDÉN

Lemma 2.4. Let 1 ≤ k ≤ n− 1. Then

Hk,k(x) = Ckek+1(x)
∏

S⊆[n]

|S|≤k−1

(∂Sek(x))
|S|!(n−|S|−1), (2.2)

where Ck is a positive constant and ∂S =
∏

j∈S ∂/∂xj.

Proof. By iterating Lemma 2.3, modulo constants,

Hr,r(x) =
(γ(r−1)r)

n−r+1

γrr

(γ(r−2)r)
n−r+2

γ(r−1)r
· · ·

(γ1r)
n−1

γ2r

(γ0r)
n

γ1r
H0,r(x)

= er+1(x)

r−1
∏

j=0

γn−j−1
jr ,

where we have used γ0r = er(x), γrr = 1 and H0,r(x) = C0,rer+1(x)/er(x). The
theorem follows by noting that ∂Sek(x) = ek−|S|(S

′). � �

To finish the proof Theorem 1.2 we need further properties of hyperbolic polyno-
mials. The next lemma is fundamental (and known) but we could not find a proof
in the literature.

Lemma 2.5. Let U ⊆ Rn be an open and connected set, and let Pn,d(U) be the
space of all hyperbolic polynomials of degree d in R[x1, . . . , xn] with hyperbolicity
cone containing U , i.e., polynomials that are hyperbolic with respect to each e ∈ U .
Then Pn,d(U) ∪ {0} is closed (under point-wise convergence).

Proof. We claim that a homogeneous polynomial h ∈ R[x1, . . . , xn] of degree d
belongs to Pn,d(U) if and only if h(z) 6= 0 for all z in the tube U + iRn := {x+ iy :
x ∈ U and y ∈ Rn}. Indeed, if h is hyperbolic with respect to each e ∈ U , then
h(e+ iy) = (−i)dh(−y + ie) 6= 0 for all y ∈ Rn by the definition of hyperbolicity.
Conversely, if h fails to be hyperbolic for some e ∈ U , then h(x + (a + ib)e) = 0
for some x ∈ Rn and a, b ∈ R with b 6= 0. Thus, by homogeneity, h(e+ i(−b−1x−
ab−1e) = 0, so that h fails to be non-vanishing on U + iRn.

If {hk}
∞
k=1 is a sequence of polynomials in Pn,d(U) which converges point-wise

to h, then the convergence is also uniform on compact subsets of Cn (by the equiv-
alence of norms in finite dimensions). It now follows from Hurwitz’ theorem on the
continuity of zeros (see [2, p. 96] for a multivariate version) that either h ∈ Pn,d(U),
or h ≡ 0. �

Lemma 2.6. Suppose h is hyperbolic with respect to e, and v ∈ Λ+(h, e) is
such that Dvh 6≡ 0. Then Dvh is hyperbolic with respect to e, and Λ+(h, e) ⊆
Λ+(Dvh, e).

Proof. Let v ∈ Λ+(h, e) and let U be the interior of Λ+(h, e). If v ∈ U , then the
conclusion is known to follow, see e.g. [3, Theorem 4]. Otherwise, if v is on the
boundary of Λ+(h, e) take a sequence {vk}

∞
k=0 ⊂ U such that limk→∞ vk = v.

Then Dvk
h ∈ Pn,d−1(U) for all k, by the above. The lemma now follows from

Lemma 2.5. � �

Proof of Theorem 1.2 By the matrix–tree theorem we may write the spanning tree
polynomial of Gn,k as det

(
∑

e∈E xeAe

)

, where {Ae}e∈E are positive semidefinite,
and A =

∑

e∈E Ae is positive definite (since det(A) is positive and equal to the
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number of spanning trees of the connected graph Gn,k). Note that when k = r, the
edge-variables in (c) in the construction of Hk,k(x) are given by

∑

j∈[n]\{w1,...,wk}

xj .

Hence we may write Hk,k(x) = det
(

∑n

j=1 xjBj

)

, where B1, . . . , Bn are positive

semidefinite. Note also that det
(

∑n

j=1 Bj

)

= Hk,k(1) 6= 0, by Lemma 2.4. Hence
∑n

j=1 Bj is positive definite, and it remains to prove Λ+(ek+1) ⊆ Λ+(∂
Sek). Now

ek(x) = (n−k)−1D1ek+1(x), so that Λ+(ek+1) ⊆ Λ+(ek) by Lemma 2.6. Since the
coordinate directions are in Λ+(ek), we have Λ+(ek) ⊆ Λ+(∂

Sek) by Lemma 2.6.
�
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