Skip to main content
Log in

Convex reformulation for binary quadratic programming problems via average objective value maximization

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

Quadratic convex reformulation is an important method for improving the performance of a branch-and-bound based binary quadratic programming solver. In this paper, we study a new convex reformulation method. By this reformulation, the efficiency of a branch-and-bound algorithm can be improved significantly. We also compare this new reformulation method with other proposed methods, whose effectiveness has been proven. Numerical experimental results show that our reformulation method performs better than the compared methods for certain types of binary quadratic programming problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Anjos, M.F., Chang, X.-W., Ku, W.-Y.: Lattice preconditioning for the real relaxation branch-and-bound approach for integer least squares problems. J. Global Optim. (2014)

  2. Anstreicher, K.M.: Semidefinite programming versus the reformulation-linearization technique for nonconvex quadratically constrained quadratic programming. J. Global Optim. 43, 471–484 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Billionnet, A., Elloumi, S.: Using a mixed integer quadratic programming solver for the unconstrained quadratic 0–1 Problem. Math. Program. 109, 55–68 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Burer, S.: On the copositive representation of binary and continuous nonconvex quadratic programs. Math. Program. 120, 479–495 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory of NP-completeness. Freeman W.H., Madison (1979)

  6. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42, 1115–1145 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Halikias, G.D., Jaimoukha, I.M., Malik, U., Gungah, S.K.: New bounds on the unconstrained quadratic integer problem. J. Global Optim. 39, 543–554 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Lemarechal, C, Oustry, F.: SDP relaxations in combinatorial optimization from a Lagrangian point of view. In: Hadjisavvas, N., Pardalos, P. (eds) Proceedings of Advances in Convex Analysis and Global Optimization, pp. 119–134. Kluwer Academic Press, New York (2001)

  9. Lu, C., Wang, Z., Xing, W.: An improved lower bound and approximation algorithm for binary constrained quadratic programming problem. J. Global Optim. 48, 497–508 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Malik, U., Jaimoukha, I.M., Halikias, G.D., Gungah, S.K.: On the gap between the quadratic integer programming problem and its semidefinite relaxation. Math. Program. 107, 505–515 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ma, W.-K., Davidson, T.N., Wong, K.M., Luo, Z.-Q., Cing, P.-C.: Quasi-maximum-likelihood multiuser detection using semi-definite relaxation with application to synchronous CDMA. IEEE Trans. Signal Process. 50, 912–922 (2002)

    Article  MathSciNet  Google Scholar 

  12. Ma, W.-K., Su, C.-C., Jaldén, J., Chang, T.-H., Chi, C.-Y.: The equivalence of semidefinite relaxation MIMO detectors for higher-order QAM. IEEE J. Sel. Topics Signal Process. 3, 1038–1052 (2009)

    Article  Google Scholar 

  13. Pardalos, P.M., Rodgers, G.P.: Computational aspects of a branch and bound algorithm for quadratic zero-one programming. Computing 45, 131–144 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  14. Poljak, S., Wolkowicz, H.: Convex relaxations of (01)-quadratic programming. Math. Oper. Res. 20, 550–561 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  15. Sidiropoulos, N.D., Luo, Z.-Q.: A semidefinite relaxation approach to MIMO detection for higher-order QAM constellations. IEEE Signal Process. Lett. 13, 525–528 (2006)

    Article  Google Scholar 

  16. Sun, X.L., Liu, C.L., Li, D., Gao, J.J.: On duality gap in binary quadratic programming. J. Global Optim. 53, 255–269 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. Tan, P., Rasmussen, L.: The application of semidefinite programming for detection in CDMA. IEEE J. Sel. Areas Commun. 19, 1142–1449 (2001)

    Google Scholar 

  18. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38, 49–95 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Wolsey, L.A.: Integer programming. Wiley, New York (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, C., Guo, X. Convex reformulation for binary quadratic programming problems via average objective value maximization. Optim Lett 9, 523–535 (2015). https://doi.org/10.1007/s11590-014-0768-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-014-0768-0

Keywords

Navigation