Skip to main content
Log in

Branch and probability bound methods in multi-objective optimization

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

An approach to non-convex multi-objective optimization problems is considered where only the values of objective functions are required by the algorithm. The proposed approach is a generalization of the probabilistic branch-and-bound approach well applicable to complicated problems of single-objective global optimization. In the present paper the concept of probabilistic branch-and-bound based multi-objective optimization algorithms is discussed, and some illustrations are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Miettinen, K.M.: Nonlinear Multiobjective Optimization. Kluwer, Dordrecht (1999)

    MATH  Google Scholar 

  2. Zopounidis, C., Pardalos, P.: Handbook of Multicriteria Analysis. Springer, New York (2010)

    Book  MATH  Google Scholar 

  3. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, New York (2009)

    MATH  Google Scholar 

  4. Horst, R., Pardalos, P., Thoai, N.: Introduction to Global Optimization. Kluwer, Dordrecht (2000)

    Book  MATH  Google Scholar 

  5. Sergeyev, Ya., Kvasov, D.: Diagonal Global Optimization Methods. Fizmatlit, Moscow (2008) (in Russian)

  6. Sergeyev, Ya., Kvasov, D.: Lipschitz global optimization. In: Cochran, J.J., Cox, L.A., Keskinocak, P., Kharoufeh, J.P., Smith, J.C. (eds.) Wiley Encyclopaedia of Operations Research and Management Science, vol. 4, pp. 2812–2828 (2011)

  7. Sergeyev, YaD, Strongin, R.G., Lera, D.: Introduction to Global Optimization Exploiting Space-Filling Curves. Springer, NY (2013)

    Book  MATH  Google Scholar 

  8. Strongin, R.G., Sergeyev, YaD: Global Optimization with Non-Convex Constraints: Sequential and Parallel Algorithms. Kluwer, Dordrecht (2000)

    Book  Google Scholar 

  9. Zhigljavsky, A.A., Z̆ilinskas, A.: Stochastic Global Optimization. Springer, NY (2008)

    MATH  Google Scholar 

  10. Zhigljavsky, A.A.: Theory of Global Random Search. Kluwer Academic Publishers, Dordrecht (1991)

    Book  Google Scholar 

  11. Zhigljavsky, A.A.: Branch and probability bound methods for global optimization. Informatica (Vilnius) 1, 125–140 (1990)

    MathSciNet  MATH  Google Scholar 

  12. Z̆ilinskas, A.: A statistical model-based algorithm for black-box multi-objective optimisation. Int. J. Syst. Sci. 45(1), 82–93 (2014)

    Article  MathSciNet  Google Scholar 

  13. Kaliszewskii, I.: A theorem on nonconvex functions and its application to vector optimization. Eur. J. Oper. Res. 80, 439–445 (1995)

    Article  Google Scholar 

  14. Paulavičius, R., Z̆ilinskas, J., Grothey, A.: Investigation of selection strategies in branch and bound algorithm with simplicial partition and combination of Lipschitz bounds. Optim. Lett. 4, 173–183 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Evtushenko, YuG, Posypkin, M.A.: Nonuniform covering method as applied to multicriteria optimization problems with guaranteed accuracy. Comput. Math. Phys. 53(2), 144–157 (2013)

    Article  MathSciNet  Google Scholar 

  16. Scholz, D.: Deterministic Global Optimization: Geometric Branch-and-Bound Methods and their Applications. Springer, New York (2012)

    Book  Google Scholar 

  17. Žilinskas, A.: A one-step worst-case optimal algorithm for bi-objective univariate optimization. Optim. Lett. (2013). doi:10.1007/s11590-013-0712-8

  18. Pardalos, P., Steponavičė, I., ŽilinskasA. : Pareto set approximation by the method of adjustable weights and successive lexicographic goal programming. Optim. Lett. 6, 665–678 (2012)

  19. Sergeyev, YaD: Numerical computations and mathematical modelling with infinite and infitesimal numbers. J. Appl. Math. Comput. 29, 177–195 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sergeyev, Ya.D.: Computer system for storing infinite, infinitesimal, and finite quantities and executing arithmetic operations with them, EU patent 1728149 (2009)

  21. Z̆ilinskas, A.: On strong homogeneity of two global optimization algorithms based on statistical models of multimodal functions. Appl. Math. Comput. 218(16), 8131–8136 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research has been done under support of The Lithuanian Research Council, Grant SF3-92/TYR-064.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antanas Z̆ilinskas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Z̆ilinskas, A., Zhigljavsky, A. Branch and probability bound methods in multi-objective optimization. Optim Lett 10, 341–353 (2016). https://doi.org/10.1007/s11590-014-0777-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-014-0777-z

Keywords

Navigation