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Abstract Bayesian Networks are increasingly popular methods of modeling uncer-
tainty in artificial intelligence and machine learning. A Bayesian Network consists
of a directed acyclic graph in which each node represents a variable and each arc
represents probabilistic dependency between two variables. Constructing a Bayesian
Network from data is a learning process that consists of two steps: learning structure
and learning parameter. Learning a network structure from data is the most difficult
task in this process. This paper presents a new algorithm for constructing an optimal
structure for Bayesian Networks based on optimization. The algorithm has two major
parts. First, we define an optimization model to find the better network graphs. Then,
we apply an optimization approach for removing possible cycles from the directed
graphs obtained in the first part which is the first of its kind in the literature. The
main advantage of the proposed method is that the maximal number of parents for
variables is not fixed a priory and it is defined during the optimization procedure. It
also considers all networks including cyclic ones and then choose a best structure
by applying a global optimization method. To show the efficiency of the algorithm,
several closely related algorithms including unrestricted dependency Bayesian Net-
work algorithm, as well as, benchmarks algorithms SVM and C4.5 are employed
for comparison. We apply these algorithms on data classification; data sets are taken
from the UCI machine learning repository and the LIBSVM. keywordsData Classifi-
cationBayesian NetworksGlobal Optimization
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1 Introduction

Classification is a basic task in data mining that requires the construction of a clas-
sifier, that is, a function which assigns a class label to observations described by a
set of feature variables. Learning accurate classifiers from preclassified data is a very
active research topic in machine learning and artificial intelligence. One of the most
effective classifiers is Bayesian Networks.

Bayesian Networks (BNs) are widely used representation frameworks for rea-
soning with probabilistic information [4,12,15,30,37]. These models use graphs to
capture dependence and independence relationship between feature variables, allow-
ing a concise representation of the knowledge as well as efficient graph based query
processing algorithms. This representation is defined by two components: structure
learning and parameter learning. The structure of this model represents a directed
acyclic graph. The nodes in the graph correspond to the feature variables in the do-
main, and the arcs (edges) show the causal relationships between feature variables.
A directed edge relates the variables so that the variable corresponding to the ter-
minal node (child) will be conditioned on the variable corresponding to the initial
node (parent). More incoming edges into a node result in a conditional probability
of the corresponding variable with conjunctional condition containing all its parents.
The parameter learning represents probabilities and conditional probabilities based
on prior information or past experience. Once the network structure is constructed,
the probabilistic inferences are readily calculated, and can be performed to predict the
outcome of some variables based on observations of others. However, the problem of
structure learning is a much more complex problem since the number of candidate
structures grows exponentially when the number of features increases [32].

In recent years, the search for the structure of a BN able to reflect all existing re-
lations of dependence in a data base has constituted a research topic of fundamental
importance. Given a set of features and a data set composed of all features, the prob-
lem is to build a structure to present the connections among the features. This struc-
ture learning process needs to select the arcs between them, and therefore construct a
network from data. Developing a structure is very useful for a variety of applications
in general, for example, where there are masses of data available and we want to un-
derstand what underlies the knowledge or which features are correlated. In addition
to providing a network that will allow us to predict behavior under conditions that we
have not seen, the structure can also incorporate domain expert knowledge to provide
more reliable suggestions. Nevertheless, there still remains the problem of building
such a network structure. It is an important task, therefore, to develop some methods
capable of learning a network structure directly from data.

Nowadays, the problem of learning structure of a BN based on optimization is re-
ceiving increasing attention within the community of researchers into uncertainty in
artificial intelligence and machine learning. Various optimization problems for find-
ing a structure of a BN have been defined. The papers [17,23,21,29] have presented
new approaches based on the Genetic algorithm to find an optimal BNs’ structure
among alternative structures. The Simulated Annealing for structure learning in BNs
have been studied, for example, in [14,35]. Application of the Particle Swarm opti-
mization to discover better structures of BNs has been studied in [34,45]. In [27], the
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Branch and Bound method has been applied for constructing a structure in a BN. The
papers [3,7,16] have proposed BNs’ structure learning algorithms based on the Ant
Colony optimization.

More recently, we introduced an iterative unrestricted dependency algorithm for
learning structure of Bayesian Networks for binary classification using a combinato-
rial optimization model [41]. Although this algorithm performs well and the results
are promising, it does not involve all possible networks. The algorithm considers only
acyclic networks and choose a network structure with the maximum training accu-
racy (equation (9) in [41]). However, there might be a cyclic network that results an
optimal solution. In the present paper, we address this challenge by developing a new
algorithm based on optimization approaches. The aim of optimization is to remove
some edges in the cyclic networks to obtain acyclic ones. The final structure is a
network with the highest accuracy among all proposed networks.

The algorithm is a general method for structure learning of BN which is used
for multi-classification in the present work. It consists of two main parts. In the first
part, we deal with an optimization model similar to that introduced in [41] to find
better networks. Then, we apply optimization techniques to remove possible cycles
to obtain an acyclic network structure. We consider two different cases for the second
part. The first one is a simple case when we have a small number of cycles. In this
case, we choose an optimal network from all possible combinations of removing
some arcs in the existing cycles. In the second case, when we have a large number of
cycles, we apply the global optimization algorithm AGOP introduced in [24,25] in
conjunction with the recently developed local optimization algorithm CGN [39,40].
AGOP is an efficient algorithm in solving many difficult practical problems where
objective functions were discontinuous [19,26] and even piecewise constant [42].

The paper is structured as follows: we briefly describe BNs in Section 2. In Sec-
tion 3, we develop a new algorithm based on optimization for structure learning in
BNs. In Section 4, we present some experimental results to compare the proposed
algorithm with some well-known classification methods. Finally, Section 5 contains
the concluding remarks.

2 Bayesian Networks

A BN is a directed acyclic graph containing nodes and edges and a set of conditional
probability distributions. Suppose a set of variables X = {X1,X2, ...,Xn}, where Xi
denotes both the feature variable and its corresponding node. Let Pa(Xi) stand for the
set of parents of the node Xi as well as the feature variables corresponding to those
parents. When there is an edge from Xi to X j, then X j is called the child variable for
the parent variable Xi. A conditional dependency connects a child variable with a set
of parent variables. The lack of possible edges encode conditional independencies.

Throughout this paper, we will refer to the collection of edges (arcs), the condi-
tional dependence and independence relations among the variables, as the structure
of BNs. In particular, given a structure, the joint probability distribution for X is given
by
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P(X) =
n

∏
i=1

P(Xi|Pa(Xi)). (1)

However, the accurate estimation of Pa(Xi) in the equation (1) is non trivial. Find-
ing such estimation requires searching the space of all possible network structures
for one that best describes the data. Structure learning algorithms determine for every
possible edge in the network whether to include the edge in the final network and
which direction to orient the edge. The number of possible graph structures grows
super exponentially as every possible subset of edges could represent the final model.
Due to this growth in graph structures, even a restricted form of structure learning
has been proven to be an NP-hard problem [6,13].

One of the restricted models in BNs is k-dependence BNs introduced by Sahami
[33]. In this algorithm, each feature variable could have a maximum of k feature
variables as parents, and these parents are obtained by using mutual information. The
value of k is initially chosen before applying the k-dependence BNs, k = 0,1,2, ....
Naive Bayes (NB) [20] is a very simple form of this algorithm when k = 0. In the NB,
feature variables are conditionally independent given the class. Although the NB is
a very efficient method on a variety of data mining problems, the strong assumption
that all features are conditionally independent given the class is often violated on
many real world applications. Friedman et al. [10] introduced Tree Augment Naive
Bayes (TAN). The TAN is a special form of the k-dependence BNs when k = 1. In
the TAN, each feature variable has the class and at most one other feature variable as
parents.

Although the mentioned methods were shown to be efficient, the features in these
methods depend on the class and a priori given number of features; k = 0 dependence
for the NB, k = 1 dependence for the TAN, and an priory given k for the k-dependence
algorithm. In fact, by setting k, i.e., the maximum number of parent nodes that any
feature may have, the final structure of BNs have been constructed. Since k is the same
for all nodes, it is not possible to model cases where some nodes have a large num-
ber of dependencies, whereas others just have a few. We tried to solve this problem
by introducing the unrestricted dependency BNs algorithm (UDBN) in [41], where
the number k is defined by the algorithm internally. In this paper, we develop this
idea further by proposing an optimization problem to eliminate possible cycles and
therefore to learn an optimal structure of a BN.

3 A New Algorithm for Structure Learning in Bayesian Networks

In this section, we propose a new algorithm to learn an optimal structure of a Bayesian
Network based on the approach developed in [41]. It uses a heuristic procedure where
Bayesian Networks are build step-by-step by adding new possible links until the net-
work obtained is acyclic. In this paper we extend this approach further by continuing
that procedure and considering all possible cases including cyclic networks. The main
question then is to make the network acyclic before building Bayesian Networks; that
is, to eliminate some links. This paper suggests to use a criteria of deleting the small-
est number of links that makes the network under consideration acyclic. Therefore, in
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each step a combinatorial optimization problem is solved. As a result, a sequence of
acyclic networks are generated by keeping as many as possible links in each. There-
fore a network with maximum training accuracy is chosen as a final structure.

Below we describe the procedure used in [41]. Consider the following optimiza-
tion model

Maximize ∑
n
i=1 ∑

n
j=1(Ki j−K)wi j,

j 6= i
(2)

s.t. wi j ∈ {0,1}, wi j +w ji ≤ 1, 1≤ i, j ≤ n, i < j.

Given 1 ≤ i, j ≤ n, i 6= j, the value wi j is the association weight (to be found),
defined by

wi j =

1 if feature Xi is the parent of feature X j,

0 otherwise.
(3)

and

Ki j =
|X j |

∑
ν2=1

|Xi|

∑
ν1=1

max{P(Xν2 j|C1,Xν1i),P(Xν2 j|C2,Xν1i), ...,P(Xν2 j|Cq,Xν1i)}. (4)

Here, |X j| and |Xi| are the number of values of features X j and Xi, respectively, and
Xν l shows the ν-th value of feature Xl , 1 ≤ l ≤ n. The notations C1,C2, ...,Cq stand
for the class labels and K is a threshold such that K ≥ 0.

From formula (2), wi j = 1 if Ki j > K ji and Ki j > K, and therefore, w ji = 0 due to
the constraint wi j +w ji ≤ 1. It is clear that wii = 0, 1≤ i≤ n. Thus problem (2) can
be solved easily.

Let us denote the solution of the problem (2) by W (K) = [wi j(K)]n×n, where

wi j(K) =

1 if Ki j > K ji and Ki j > K,

0 otherwise,
(5)

and the set of arcs is represented by

A(W ) = {(i, j) : i f wi j = 1, 1≤ i, j ≤ n, i 6= j}. (6)

Here, (i, j) shows the arc from Xi to X j. It is clear that A(W )⊂ I, where

I = {(i, j) : 1≤ i, j ≤ n}

is the set of all possible couples (i, j).
We find the best value for K based on the maximum training accuracy for W (K),

defined by (5), that is a solution to (2). K is in the interval [0,Kmax] where

Kmax = max{Ki j : 1≤ i, j ≤ n, i 6= j}. (7)

We will consider different values K = Kr=̇Kmax− εr, r = 0,1, ... until Kr < 0.
Given Kr, let W (Kr) = [wi j(Kr)]n×n be the matrix defined by (5).
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With the matrix W (Kr), the set of arcs A(W (Kr)) and, therefore, a network will
be learnt.

Since the network structure is constrained to be acyclic, we should not have any
cycle in the network obtained by A(W (Kr)). Because of this limitation, in [41] the
above procedure of considering different values Kr = Kmax− εr, r = 0,1, ... is termi-
nated when the network obtained is cyclic. In this paper we continue this procedure
until Kr < 0 and construct acyclic networks by eliminating some links in each step.
This allows us to consider a significantly larger set of networks when searching the
best one.

Suppose we have m cycles in the network found by A(W (Kr)), and consider

C (W (Kr)) = ∪m
l=1Cl(W (Kr))

where Cl(W (Kr)) denotes the set of arcs which makes l-th cycle, l = 1,2, ...,m.
Clearly Cl(W (Kr))⊂ A(W (Kr)) for all l = 1, ...,m, and wi j = 1 if (i, j)∈Cl(W (Kr)).

We also define C (W (Kr)) = I \∪m
l=1Cl(W (Kr)).

Consider the set of all arcs that are at least in one cycle in the network obtained
by A(W (Kr)). Let m be the number of arcs in this set. Accordingly, we define

V (Kr) = {vr1 ,vr2 , ...,vrm}, (8)

where v represents an arc, r ∈ {r1,r2, · · · ,rm} is related to an arc (ir, jr) that belongs
to some cycle in the network obtained by A(W (Kr)) and vr = wir jr = 1.

The aim is to delete a minimal number of arcs to have an acyclic structure. Delet-
ing existing arcs in (8) means setting 0 to some vri , l = 1, ...,m. We apply an opti-
mization procedure to existing arcs in cycles (8). We utilize two different methods.

1. The first one is a simple case that can be used if the number m is small. In this
case, we can consider all the possible combinations of deleting arcs in the existing
cycles. Let us denote by

V= {Vs(Kr), s = 1,2, ...,ρ}, (9)

the set of all possible combinations of m dimensional vectors Vs(Kr) with values 0
and 1. Clearly ρ = 2m. Then we chose a vector V ∗ = (v∗r1

,v∗r2
, ...,v∗rm

) that has a max-
imal norm ‖V ∗‖ provided that the corresponding network is acyclic.

2. We consider continuous variables (vr1 ,vr2 , ...,vrm) with vri ∈ [0,1], i= 1, ...,m,
to formulate an optimization problem.

Denote by B a binary transformation given by B(vr1 ,vr2 , ...,vrm)= (ṽr1 , ṽr2 , ..., ṽrm),
where for i = 1, ...,m

ṽri =

0 if vri ≤
1
2 ,

1 if vri >
1
2 .

(10)

We denote by γ(B(vr1 ,vr2 , ...,vrm)) the number of cycles in the corresponding
structure. Clearly, for large m, the number ρ will grow exponentially and therefore
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searching an acyclic network by considering all the possible combinations with the
maximal norm ‖V‖ will be impossible. In this case, we generate an optimization
problem involving variables vri , i = 1, ...,m, as follows:

Maximize
m

∑
i=1

(
(vri −

1
2
)2 +ζvri

)
−µγ(B(vr1 ,vr2 , ...,vrm)), s.t. vri ∈ [0,1], ∀ i.

(11)
Here ζ ∈ (0, 1

2 ) and µ is a penalty parameter assigned to the number of cycles.

Problem (11) attempts to find an acyclic network with the largest number of arcs.
We apply algorithm AGOP and CGN to solve problem (11). Let (v∗r1 ,v

∗
r2 , ...,v

∗
rm
)

be a global optimal solution to (11). The proposition below shows that it is a binary
vector. Therefore, we can set V ∗ = (v∗r1

,v∗r2
, ...,v∗rm

) = (v∗r1 ,v
∗
r2 , ...,v

∗
rm
).

Proposition: Let (v∗r1 ,v
∗
r2 , ...,v

∗
rm
) is a global optimal solution to problem (11).

Then it is a binary vector; that is, v∗ri ∈ {0,1},∀ i; and the corresponding structure is
acyclic: γ(B(v∗r1 ,v

∗
r2 , ...,v

∗
rm
)) = 0.

Proof: The fact γ(B(v∗r1 ,v
∗
r2 , ...,v

∗
rm
)) = 0 is a direct result of applying a large

penalty parameter µ; thus, the corresponding structure is acyclic. Now we show that
the vector (v∗r1 ,v

∗
r2 , ...,v

∗
rm
) is binary.

Take any 1≤ i≤m, and denote x = v∗ri . For the sake of simplicity, let i = 1. After
fixing all other elements v∗rj , j 6= i, we obtain

ψ(x) = ϕ(x)+λ , (12)

where

ϕ(x) = (x− 1
2
)2 +ζ x, (13)

and

λ = ∑
j 6=i

(
(vrj −

1
2
)2 +ζvrj

)
−µγ(B(x,vr2 , ...,vrm)). (14)

By assumption x = v∗r1 is a global maximum of ψ(x). On the contrary, assume
that v∗r1 is not binary.

It is clear that the function ϕ(x) has one minimum at x = 1−ζ

2 . Moreover, ϕ(0) =
1
4 and since 0 < ζ < 1

2 , we have

ϕ(
1
2
) =

1
2

ζ <
1
4
.

Therefore, ϕ(x) has a unique maximizer x∗ = 0 on the interval [0, 1
2 ]; and has a

unique maximizer x∗∗ = 1 on the interval [0,1].
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Now, if v∗r1 ∈ ( 1
2 ,1), then taking x = 1 from (10) we have

B(1,v∗r2 , ...,v
∗
rm
) = B(v∗r1 ,v

∗
r2 , ...,v

∗
rm
)

and, therefore, γ(B(1,v∗r2 , ...,v
∗
rm
)) = 0. Then ψ(1)> ψ(v∗r1). This contradicts to the

assumption that v∗r1 is a global maximizer of ψ(x).
On the other hand, if v∗r1 ∈ (0, 1

2 ], then taking x = 0 from (10) we have
B(0,v∗r2 , ...,v

∗
rm
) = B(v∗r1 ,v

∗
r2 , ...,v

∗
rm
) and, therefore, γ(B(0,v∗r2 , ...,v

∗
rm
)) = 0. Then

ψ(0)> ψ(v∗r1) that is again a contradiction. 2

Once the acyclic network structure for a specific r is found, the corresponding
training accuracy is estimated. Based on the highest training accuracy, the value for r
and, therefore, the best value for Kr is chosen.

According to explanations above, we present the following algorithm for learning
an optimal structure of a BN, and we call it Algorithm OpBN.

4 Numerical Experiments

The experimental work is carried out using 22 benchmark data sets taken from the
UCI machine learning repository [1] and the tools page of the LIBSVM [5]. These
data sets have been considered quite frequently in the literature. A brief description
of the data sets is given in Table 1.

We use three different methods to discretize the continuous features. In the first
one, we apply a mean value of each feature to discretize values to binary, {0,1}. In
the second one, we apply the Fayyad and Irani’s discretization method [9]. The third
one is Algorithm SOAC [44]; the parameter θ in this algorithm is chosen as 0.2. This
parameter has not been fitted by preliminary experimentation, and is similar to the
one used for other problems in [44].

We conduct experiments to compare the proposed algorithm (OpBN) with the
most relevant methods in which these methods has the number of parents priory
given; the Naive Bayes (NB), the Tree Augmented Naive Bayes (TAN), the k-Dependency
Bayesian Networks (k-DBN), k = 2. We also compare the present algorithm with our
previous work [41], the unrestricted dependency BNs algorithm (UDBN) to show the
efficiency of applying optimization techniques to the BNs. Some benchmark classi-
fiers like the SVM and the C4.5 have been chosen to show the proposed algorithm is
comparable with these well known methods. In all cases we use 10-fold cross valida-
tion. Runs with the various classifiers were carried out on the same training sets and
evaluated on the same test sets. In particular, the cross validation folds are the same
for all experiments on each data set. We used Weka machine learning software for
C4.5 and SVM with radial basis kernel.

In calculations, we take η = 10−3, ϑ = 1.1, δ = 10−3, ω = 10−10, ϖ = 1010

for the CGN based on [40] and we set µ = 103, ε = 0.1, ρ0 = 210 for the proposed
algorithm.
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Algorithm3. Algorithm OpBN

Step 1. Compute {Ki j, 1≤ i, j ≤ n, i 6= j} using (4).

Step 2. Determine Kmax using (7), and set r = 0.

Step 3. While Kr = Kmax− εr ≥ 0 :
3.1. Compute {wi j(Kr), 1≤ i, j ≤ n, i 6= j}, using (5). Set wi j(Kr) = 0 for i = j, and let
W (Kr) = [wi j(Kr)]n×n.

3.2. Find the set of arcs A(W (Kr)) using (6).

3.3. Apply the topological traversal algorithm [2,11] to detect possible cycles in the network
obtained by A(W (Kr)). If there is no cycle, then calculate the training accuracy,
accuracy(A(W (Kr))); set r = r+1 and go back to Step 3.

3.4. Apply the DFS algorithm [36,43] to determine a vector V (Kr) in (8).

3.5. Find V, using (9), and determine ρ . If ρ > ρ0 go to 3.10.

3.6. For s = 1,2, ...,ρ , check the network obtained by A(W s(Kr)) for any possible cycle, using the
topological traversal algorithm, where W s(Kr) = [wi j(Kr)]n×n, and

wi j(Kr) =

wi j(Kr) if (i, j) ∈ C (W (Kr)),

vrτ
if (irτ

, jrτ
) ∈ C (W (Kr)).

3.7. Set Ṽ= {Ṽs̃(Kr), s̃ = 1,2, ..., ρ̃} including those vectors from the set V that are acyclic, and
ρ̃ ≤ ρ .

3.8. Let V̂= {V̂ŝ(Kr), ŝ = 1,2, ..., ρ̂} combines all vectors in the set Ṽ having maximum norm.
Clearly ρ̂ ≤ ρ̃ and often there are several vectors with the same maximum norm; that is ρ̂ might
be greater than 1.

3.9. Find the maximum training accuracy, accuracy(A(Ŵ ∗(Kr))) between the network structures
obtained by Ŵŝ(Kr), ŝ = 1,2, ..., ρ̂ corresponding to V̂ŝ(Kr) and set W (Kr) = Ŵ ∗(Kr); set r = r+1
and go back to Step 3.

3.10. Solve the optimization problem (11) by applying algorithm AGOP; denote the solution
found by V ′(Kr). Then apply algorithm CGN starting from this solution to obtain a vector V ∗(Kr).
After this optimization procedure we create corresponding matrix W ∗(Kr). Set W (Kr) =W ∗(Kr),
and find the new acyclic network structure by a set of arcs A(W (Kr)) using (6).

3.11. Compute the training accuracy, accuracy(A(W (Kr)); set r = r+1 and go back to Step 3.

Step 4. Find the best K∗r where accuracy(A(W (K∗r ))) has the maximum value among the training
accuracies, accuracy(A(W (Kr))), r = 1,2, ....

Step 5. Return an optimal acyclic structure using a set of arcs A(W (K∗r )).

4.1 Results

In this section, we present accuracies obtained with the proposed algorithm OpBN.
We compare the OpBN by means of the predictive accuracies obtained with some
well-known classifiers such as the NB, the TAN, the k-DBN, the UDBN, the SVM,
and the C4.5. The predictive accuracy of each method is the percentage of test sets
for which it predicts the class correctly. The predictive accuracies, for each classifier
in each data set, are summarized in Tables 2 to 4, where continuous features are
discretized by using mean values, the Fayyad and Irani’s method and discretization
algorithm SOAC, respectively. Since the UDBN is an algorithm proposed for binary
classification, we do not have the accuracy results for multi class data sets.
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Figure 1 shows the scatter plots comparing the proposed algorithm with the NB,
the TAN, the k-DBN, the UDBN, the SVM, and the C4.5 on different data sets us-
ing the Fayyad and Irani’s method discretization method. In these plots, each point
represents a data set, where the x coordinate of a point is the percentage of miss classi-
fications according to the proposed algorithm, and the y coordinate is the percentage
of miss classification according to the chosen classifier for comparison. Therefore,
points above the diagonal line correspond to data sets where the proposed algorithm
performs better, and points below the diagonal line correspond to data sets where the
chosen classifier performs better.

Tables 2 to 4 demonstrate the efficiency of the proposed algorithm when we com-
pare it to some other well known methods. This algorithm has not only the advantage
of finding the number of parents for each node internally during the optimization
process but also outperforms other listed methods in these tables in terms of the ac-
curacy. The test set accuracies of the proposed algorithm (OpBN) are significantly
higher than the NB, the TAN and the k-DBN in all data sets using different dis-
cretization methods for continuous features. Compared to the UDBN, it has better
accuracies in the majority of data sets; In 21 cases out of 22 , using mean values for
discretization and the algorithm SOAC, the OpBN shows greater accuracies than the
UDBN and also higher in 20 cases out of 22 data sets where continuous features are
discretized by applying the Fayyad and Irani’s method (FaI). It is also notable that
the proposed algorithm has greater accuracies than the benchmark classifiers in the
most of data sets and almost ties in few ones.

The comparison of the time complexity of our method with the others is not
considered in this paper as different platforms were used to conduct the results. We
have used Matlab to create code for our method and the UDBN, Fortran for the NB,
the TAN and the k-DBN and Weka machine learning was used for the SVM and the
C4.5. But we include running time for the proposed algorithm when we apply it to
the Diabetes data set in the next subsection.

4.2 Dynamic structures generated by OpBN

As mentioned above the main advantage of the proposed method is that it does not set
the number of parents a priory. This number comes from the optimization procedure;
it might be different for different folds on the same data. To demonstrate this we
consider two examples; the first one is the Diabetes data set with 8 features (see Table
1). In the Table 5, we demonstrate structures obtained by the proposed algorithm
for different folds. Four different structures obtained when applying 10-folds cross
validation. For instance, parents of the feature X7 are X3,X4,X5 for folds 1 and 5-
10 and X4,X5 for folds 2 and 3. This feature (X7) does not have any parent in the
structure obtained for the fold 4. The average computational time of the proposed
algorithm using 10-folds cross validation to find an optimal structure of this data set
is 22 seconds.

The second one is the Ionosphere data set with 34 features (see Table 1) when
we have quite large number of features. In the Table 6, we provide structures of the
Ionosphere data set in the folds 1 and 10. We only include features with parents in
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this table and skip those without parents. For example, in the fold 10, feature X33 has
the parents X6,X10,X20 and X34 doesn’t have any and therefore it is not in the table.
The average running time employed by the proposed algorithm over 10-folds cross
validation to find an optimal structure of the Ionosphere data set is 569 seconds.

In the Table 7, we include the number of cycles and the length of each one in
the networks obtained for these data sets for different values of r in one fold before
the application of optimization techniques. This table shows that the Diabetes data
set has no cycles for r = 0,1,2,3. They start from r = 4 and for r > 9, the number
of cycles and their length are the same. For the data set Ionosphere, there is no cycle
when r < 6 starting for r = 6 and repeating the same ones after r > 15. Note that,
given any r, the steps 3.5−3.10 (global optimization phase) of the algorithm OpNB,
eliminate all these cycles and produce an acyclic network by removing a minimal
number of arcs.

5 Conclusion

In this paper, a new algorithm has been proposed to learn an optimal structure of a
Bayesian Network. The algorithm consists of two major parts in which in the first
part a combinatorial optimization model has been constructed to determine the better
structures and, then, an optimal structure is obtained using an optimization approach
to remove possible cycles from the initial graphs obtained in the first part. The num-
ber of parents for each node is determined along the process of the algorithm when
we apply optimization approaches. This is the main advantage of the proposed algo-
rithm to some well known BN models with the given number prior to the algorithm,
but in reality it may vary for each data sets. This algorithm also choose an optimal
network from all possible networks including cyclic ones by applying optimization
techniques which is the main improvement of our previous work, unrestricted depen-
dency Bayesian Networks.

Some benchmark data sets, from the UCI machine learning repository and the
LIBSVM, are used to evaluate the effectiveness of the proposed algorithm on data
classification and to compare its performance with some commonly used classifiers.
The obtained results indicate that the new algorithm outperforms all the other men-
tioned algorithms for accuracy. An interesting aspect of the proposed algorithm and
its learning method is that it discovers unrestricted edges between nodes (dependen-
cies between features) which is common in real life data sets.

References

1. Asuncion, A. and Newman, D. UCI machine learning repository. School of Information and Computer
Science, University of California http://www.ics.uci.edu/mlearn/MLRepository.html. (2007)

2. Bender, M. A. , Fineman, J. T. Gilbert, S, A New Approach to Incremental Topological Ordering, Pro-
ceedings of the twentieth Annual ACM-SIAM Symposium on Discrete Algorithms Society for Industrial
and Applied Mathematics Philadelphia, PA, USA, (2009)

3. Campos, L., Fernandez-Luna, M. , Gamez, A. , Puerta, M., Ant colony optimization for learning
Bayesian networks. International Journal of Approximate Reasoning, 291-311 (2002)



12 Sona Taheri, Musa Mammadov

Table 1 A brief description of data sets.

Data sets # Observations # Features # Classes

Breast Cancer 699 10 2
Congres Vote 435 16 2
Credit Approval 690 15 2
Diabetes 768 8 2
German.numer 1000 24 2
Glass Identification 214 10 7
Haberman Survival 306 3 2
Heart Disease 303 14 2
Hepatitis 155 19 2
Image Segmentation 2310 19 7
Ionosphere 351 34 2
Iris 150 4 3
Letter Recognition 20000 16 26
Liver Disorders 345 6 2
Lymphography 148 18 4
Sonar 208 60 2
Soybean-Large 307 35 19
Spambase 4601 57 2
Svmguide1 7089 4 2
Svmguide3 1284 21 2
Vehicle Silhouettes 946 18 4
Waveform-21 5000 21 3

Table 2 Average predictive accuracy over 10 fold cross validation for 22 data sets using mean value for
discretization.

Data sets Bayesian Network Classifiers Benchmark Classifiers
NB TAN k-DBN UDBN OpBN SVM C4.5

Breast Cancer 96.10 95.71 97.31 97.66 97.89 95.15 91.06
Congress Vote 90.31 91.42 94.62 95.48 96.93 96.02 95.51
Credit 84.95 82.88 86.87 87.46 88.14 85.31 87.47
Diabetes 75.90 76.48 75.03 75.98 77.81 76.72 75.98
German 75.41 74.13 76.35 76.27 78.30 76.11 72.43
Glass 69.40 68.95 69.64 — 73.74 71.14 69.35
Haberman 75.01 73.85 76.43 77.86 78.92 73.34 71.60
Heart Disease 81.12 84.12 84.27 84.71 84.85 80.14 81.53
Hepatitis 83.61 83.14 84.12 85.25 86.08 83.61 82.97
Image Seg 90.65 85.01 91.08 — 93.10 89.35 93.13
Ionosphere 82.90 84.02 88.35 89.98 90.21 85.94 86.20
Iris 95.66 95.66 95.66 — 96.11 95.66 95.66
Letter 64.65 73.01 73.91 — 86.98 82.10 87.41
Liver 61.86 61.89 62.22 64.17 65.73 60.16 60.79
Lymphography 79.71 66.89 71.43 — 86.24 86.31 77.12
Sonar 75.18 75.44 75.61 76.89 78.92 76.98 76.65
Soybean 91.08 92.02 92.27 — 94.28 93.52 91.85
Spambase 90.03 89.69 89.27 92.37 94.12 90.17 91.89
Svmguide1 92.57 91.99 92.98 94.17 97.09 93.24 93.62
Svmguide3 81.51 83.04 83.64 85.41 85.41 80.16 81.24
Vehicle 59.15 68.70 68.91 — 76.18 73.98 69.99
Waveform-21 76.98 75.12 75.86 — 85.51 85.59 74.51
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Table 3 Average predictive accuracy over 10 fold cross validation for 22 data sets using discretization
method FaI.

Data sets Bayesian Network Classifiers Benchmark Classifiers
NB TAN k-DBN UDBN OpBN SVM C4.5

Breast Cancer 97.18 96.52 96.92 97.72 97.98 96.52 94.11
Congress Vote 90.11 93.21 94.73 95.12 96.71 95.04 95.32
Credit 86.10 84.78 86.44 87.21 88.93 85.03 84.87
Diabetes 74.56 75.14 75.12 75.85 77.84 75.51 73.83
German 74.50 73.13 76.32 76.27 79.82 76.41 71.92
Glass 69.63 69.15 69.84 — 74.30 71.50 69.58
Haberman 75.09 74.41 76.89 77.91 79.18 73.20 71.24
Heart Disease 82.93 81.23 83.45 85.14 85.31 81.67 82.85
Hepatitis 84.56 83.91 83.90 85.17 86.87 85.16 83.87
Image 91.15 85.31 91.18 — 93.58 89.52 93.62
Ionosphere 88.62 89.77 89.83 91.10 92.62 89.67 89.98
Iris 95.87 95.87 95.87 — 96.11 95.87 95.87
Letter 64.93 73.41 73.86 — 87.68 82.22 87.68
Liver 63.26 63.18 64.17 65.91 66.86 62.03 62.15
Lymphography 79.70 66.85 76.34 — 87.94 86.48 77.01
Sonar 76.32 76.47 76.49 76.74 79.35 77.96 77.31
Soybean 91.19 92.10 92.52 — 94.12 93.85 91.97
Spambase 90.41 89.78 89.39 93.18 93.18 90.43 92.97
Svmguide1 92.39 91.61 92.76 94.45 97.22 94.31 95.99
Svmguide3 81.23 82.47 83.23 84.42 84.42 80.37 81.38
Vehicle 58.27 67.85 67.88 — 77.32 74.34 72.45
Waveform-21 77.87 75.35 76.71 — 86.50 86.68 74.68

Table 4 Average predictive accuracy over 10 fold cross validation for 22 data sets using discretization
Algorithm SOAC.

Data sets Bayesian Network Classifiers Benchmark Classifiers
NB TAN k-DBN UDBN OpBN SVM C4.5

Breast Cancer 96.12 95.60 96.76 97.65 97.94 95.31 91.16
Congress Vote 90.11 91.42 92.61 94.16 96.97 96.75 95.12
Credit 85.85 84.98 86.53 87.17 89.11 86.11 87.54
Diabetes 75.78 75.90 75.82 76.22 78.02 76.68 75.63
German 74.61 74.01 75.31 76.15 79.14 76.35 72.21
Glass 69.52 69.02 69.76 — 73.84 71.62 69.46
Haberman 74.66 76.08 75.64 77.31 79.24 73.36 72.15
Heart Disease 78.62 77.37 79.54 81.69 83.46 77.96 79.17
Hepatitis 82.93 81.54 84.21 85.93 86.12 84.24 82.34
Image 91.37 85.51 91.24 — 93.41 89.47 93.72
Ionosphere 85.92 86.18 85.94 88.62 90.23 86.15 86.71
Iris 93.43 93.42 94.11 — 95.36 94.18 94.18
Letter 64.80 73.71 73.98 — 87.34 82.41 87.71
Liver 65.82 65.73 65.95 65.97 66.81 63.69 64.98
Lymphography 79.76 66.95 71.81 — 86.34 86.73 77.11
Sonar 75.09 75.76 75.85 76.91 79.31 77.74 76.41
Soybean 91.21 92.15 92.31 — 94.79 93.81 91.99
Spambase 89.30 89.04 90.69 92.54 93.26 91.56 93.73
Svmguide1 95.81 94.91 96.32 97.54 97.91 95.94 96.91
Svmguide3 77.25 79.99 80.75 82.92 82.92 78.32 78.49
Vehicle 62.23 69.97 69.78 — 75.24 73.81 72.88
Waveform-21 76.98 74.58 75.64 — 88.78 86.12 74.06
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Table 5 Parents of feature Xi in the data set ’Diabetes’ obtained by Algorithm ’OpBN’.

Xi Parents(Xi)

Folds: 1, 9, 10 Folds: 2, 3 Fold: 4 Folds: 5, 6, 7, 8

X1 X3−X5,X7 X3−X5,X7 X3−X5,X7 X3−X5,X7
X2 X1,X3−X8 X1,X3−X8 X1,X3−X8 X1,X3−X8
X3 X4,X5 X4,X5,X7 X4,X5,X7 X4,X5
X4 no parent no parent X7 no parent
X5 X4 X4 X4,X7 X4
X6 X1,X3−X5,X7,X8 X1,X3−X5,X7,X8 X1,X3−X5,X7 X1,X3−X5,X7
X7 X3−X5 X4,X5 no parent X3−X5
X8 X1,X3−X5,X7 X1,X3−X5,X7 X1,X3−X7 X1,X3−X7

Table 6 Parents of feature Xi in the data set ’Ionosphere’ obtained by Algorithm ’OpBN’; no parents for
missing Xi’s

Fold 1 Fold 10
Xi Parents(Xi) Xi Parents(Xi)

X1 X21 X1 X6
X5 X32 X4 X13,X15
X7 X14 X5 X16
X8 X13,X15,X17,X19,X25 X7 X16
X10 X9,X19,X25 X8 X15,X19,X21,X29
X12 X13 X9 X6,X16,X18,X27,X30,X32,X34
X14 X5,X13,X31,X33 X10 X15,X21,X29
X15 X32 X11 X14
X16 X15,X19,X21,X23,X25,X31 X12 X15
X18 X3,X29 X13 X12,X16,X26
X22 X4 X14 X6
X27 X12,X21 X15 X3,X6,X16,X18,X22,X24,X27,X28,X30,X32,X34

X19 X3,X6
X21 X3,X6,X16,X27,X34
X29 X3,X6,X16,X18,X22,X27,X34
X33 X6,X10,X20

Table 7 Number of cycles and length of each cycle for Diabetes and Ionosphere for different r.

r Diabetes Ionosphere
No.Cycles Length of Cycles No.Cycles Length of Cycles

0-3 0 - 0 -
4 1 3 0 -
5 1 3 0 -
6 2 3, 5 3 3, 5, 3
7 3 3, 5, 6 5 3, 5, 3, 4, 3
8 5 3, 5, 6, 7, 4 6 3, 5, 3, 4, 3, 7
9 11 3, 5, 6, 7, 4 , 6, 3, 4, 5, 6, 4 7 3, 5, 3, 4, 3, 7, 10
10 7 3, 5, 3, 4, 3, 7, 10
11 7 3, 5, 3, 4, 3, 7, 10
12 8 3, 5, 3, 4, 3, 7, 10, 8
13 9 3, 5, 3, 4, 3, 7, 10, 8, 4
14 10 3, 5, 3, 4, 3, 7, 10, 8, 4, 11
15 15 3, 5, 3, 4, 3, 7, 10, 8, 4, 11, 7, 6, 8, 10, 9
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Fig. 1 Scatter plots comparing miss classifications of the proposed algorithm (x coordinate) with compet-
ing methods (y coordinate); using the discretization method FaI
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