Skip to main content
Log in

A note on augmented Lagrangian-based parallel splitting method

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

We consider the linearly constrained separable convex minimization problem, whose objective function consists of the sum of \(m\) individual convex functions in the absence of any coupling variables. While augmented Lagrangian-based decomposition methods have been well developed in the literature for solving such problems, a noteworthy requirement of these methods is that an additional correction step is a must to guarantee their convergence. This note shows that a straightforward Jacobian decomposition of the augmented Lagrangian method is globally convergent if the involved functions are further assumed to be strongly convex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Auslender, A., Teboulle, M.: Lagrangian duality and related multiplier methods for variational inequality problems. SIAM J. Optim. 10, 1097–1115 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Auslender, A., Teboulle, M.: Entropic proximal decomposition methods for convex programs and variational inequalities. Math. Program. 91, 33–47 (2001)

    MathSciNet  MATH  Google Scholar 

  3. Bardsley, J., Knepper, S., Nagy, J.: Structured linear algebra problems in adaptive optics imaging. Adv. Comput. Math. 35, 103–117 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)

    Book  MATH  Google Scholar 

  5. Bose, N., Boo, K.: High-resolution image reconstruction with multisensors. Int. J. Imaging Syst. Technol. 9, 294–304 (1998)

    Article  Google Scholar 

  6. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3, 1–122 (2010)

    Article  MATH  Google Scholar 

  7. Chen, C., He, B., Ye, Y., Yuan, X.: The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent. Math. Program. (2014). doi:10.1007/s10107-014-0826-5

  8. Dinh, Q., Necoara, I., Savorgnan, C., Diehl, M.: An inexact perturbed path-following method for Lagrangian decomposition in large-scale separable convex optimization. SIAM J. Optim. 23, 95–125 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Eckstein, J.: Augmented Lagrangian and alternating direction methods for convex optimization: a tutorial and some illustrative computational results (2012). http://www.optimization-online.org/DB_FILE/2012/12/3704.pdf

  10. Giannessi, F., Antonino, A.: Variational Inequalities and Network Equilibrium Problems. Plenum Press, New York (1995)

    Book  Google Scholar 

  11. Han, D., He, H., Xu, L.: A proximal parallel splitting method for minimizing sum of convex functions with linear constraints. J. Comput. Appl. Math. 256, 36–51 (2014)

    Article  MathSciNet  Google Scholar 

  12. Han, D., Yuan, X.: A note on the alternating direction method of multipliers. J. Optim. Theory Appl. 155, 227–238 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Han, D., Yuan, X., Zhang, W.: An augmented-Lagrangian-based parallel splitting method for separable convex minimization with applications to image processing. Math. Comput. 83, 2263–2291 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. He, B., Hou, L., Yuan, X.: On full Jacobian decomposition of the augmented Lagrangian method for separable convex programming (2013). http://www.optimization-online.org/DB_FILE/2013/05/3894.pdf

  15. He, B., Tao, M., Xu, M., Yuan, X.: Alternating directions based contraction method for generally separable linearly constrained convex programming problems. Optimization 62, 573–596 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. He, B., Tao, M., Yuan, X.: A splitting method for separate convex programming with linking linear constraints. IMA J. Numer. Anal. (2014). doi:10.1093/imanum/drt060

  17. He, B., Tao, M., Yuan, X.: Alternating direction method with Gaussian-back substitution for separable convex programming. SIAM J. Optim. 22, 313–340 (2012)

    Article  MathSciNet  Google Scholar 

  18. He, B., Xu, H., Yuan, X.: On the proximal Jacobian decomposition of ALM for multiple-block separable convex minimization problems and its relationship to ADMM (2013). http://www.optimization-online.org/DB_FILE/2013/11/4142.pdf

  19. He, H., Han, D.: A distributed Douglas-Rachford splitting method for multi-block convex minimization problems. Adv. in Computational Math. (2013). (submitted)

  20. Hestenes, M.: Multiplier and gradient methods. J. Optim. Theory Appl. 4, 303–320 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  21. Latorre, V., Gao, D.Y.: Canonical duality for solving general nonconvex constrained problems (2014, submitted). arXiv:1310.2014v1

  22. Nedic, A., Ozdaglar, A.: Distributed subgradient methods for multi-agent optimization. IEEE Trans. Autom. Control 54, 48–61 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nesterov, Y.: Introductory Lectures on Convex Optimization: Basic Course. Kluwer, Boston (2003)

    Google Scholar 

  24. Oreifej, O., Li, X., Shah, M.: Simultaneous video stabilization and moving object detection in turbulence. IEEE Trans. Pattern Anal. Mach. Intell. 35, 450–462 (2013)

    Article  Google Scholar 

  25. Powell, M.: A method for nonlinear constraints in minimization problems. In: Fletcher, R. (ed.) Optimization, pp. 283–298. Academic Press, New York (1969)

  26. Rockafekllar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  Google Scholar 

  27. Setzer, S., Steidl, G., Tebuber, T.: Deblurring Poissonian images by split Bregman techniques. J. Vis. Commun. Image R. 21, 193–199 (2010)

    Article  Google Scholar 

  28. Tao, M., Yuan, X.: Recovering low-rank and sparse components of matrices from incomplete and noisy observations. SIAM J. Optim. 21, 57–81 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., Knight, K.: Sparsity and smoothness via the fused LASSO. J. R. Stat. Soc. Ser. B 67, 91–108 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, X., Hong, M., Ma, S., Luo, Z.: Solving multiple-block separable convex minimization problems using two-block alternating direction method of multipliers (2013, submitted). arXiv:1308.5294

  31. Yang, J., Zhang, Y.: Alternating direction algorithms for \(\ell _1\)-problems in compressive sensing. SIAM J. Sci. Comput. 332, 250–278 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank two anonymous referees and Professor Deren Han for their valuable comments on this paper, and in particular, one referee for bringing to our attention the relevant reference [21]. This research was supported by NSFC at Grant No. 11301123, the Zhejiang Provincial NSFC Grant No. LZ14A010003, and MOE (Singapore) Tier 1 Grant No. M4011083.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjin He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Desai, J. & He, H. A note on augmented Lagrangian-based parallel splitting method. Optim Lett 9, 1199–1212 (2015). https://doi.org/10.1007/s11590-014-0825-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-014-0825-8

Keywords

Navigation