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Abstract

Hospitals have been challenged in recent years to deliver high quality care with limited resources.
Given the pressure to contain costs, developing procedures for optimal resource allocation be-
comes more and more critical in this context. Indeed, under/overutilization of ward resources
can either compromise a hospital’s ability to provide the best possible care, or result in precious
funding going toward underutilized resources. Simulation–based optimization tools then help
facilitating the planning and management of hospital services, by maximizing/minimizing some
specific indices (e.g. net profit) subject to given clinical and economical constraints.

1



In this work, we develop a simulation–based optimization approach for the resource planning
of a specific hospital ward. At each step, we first consider a suitably chosen resource setting
and evaluate both efficiency and satisfaction of the restrictions by means of a discrete–event
simulation model. Then, taking into account the information obtained by the simulation process,
we use a derivative–free optimization algorithm to modify the given setting. We report results
for a real–world problem coming from the obstetrics ward of an Italian hospital showing both
the effectiveness and the efficiency of the proposed approach.

Keywords: Healthcare problems, Simulation–based optimization, Derivative–Free methods.

1 Introduction

Delivering effective and affordable healthcare services represents a substantial challenge for all
countries [1, 2, 3, 4]. The ageing of population, combined with higher expectations on specialists
care, forces the healthcare providers to improve the resource management by means of advanced
tools [5, 6, 7, 8] that prevent costs from rising uncontrollably.

In recent years, hospital financing has hence changed from a budget oriented (lump sum) system
to a fee-for-service system in many National Health Services (NHS). As a consequence of fee-
for-service financing, hospitals must necessarily consider how to optimally allocate resources by
evaluating which services should be expanded and which should be discontinued (see e.g. [9, 10]).

Operations Research tools are ideally suited to provide solutions and insights for the many
problems healthcare managers usually need to deal with [11]. Indeed, a large number of papers
on health policy analysis, based on Operations Research methods, has emerged to address the
problems mentioned above. In particular, Discrete Event Simulation (DES) methods have been
widely used for analyzing healthcare systems performance (see [12, 13, 14] and the references therein
for a survey).

In the last years, DES methods are often combined with optimization techniques in order to
improve the performance of systems under study. In a simulation optimization framework, the
output of a simulation model is used by an optimization strategy to provide feedback on progress
of the search for the optimal solution. This, in turns, guides further input to the simulation model.

The integration of optimization techniques into simulation practice, specifically into commer-
cial software, has become nearly ubiquitous, as most DES packages now include some form of
optimization routine (see, e.g. [15]). Anyway, the vast majority of those packages uses heuristic
techniques in the optimization phase. For instance, OptQuest, developed by OptTek Systems, Inc.,
Boulder, Colorado, USA (see http://www.opttek.com/OptQuest), which is a widely used tool in
simulation optimization, combines neural networks with scatter and tabu search (see, e.g. [16]). It
is then possible to observe a disconnect between research in optimization, which is mainly focused
on developing theoretical results of convergence and specialized algorithms and the recent software
developments.

In this paper, with the goal of narrowing the gap between research and practice, we develop a
DES model of a specific healthcare application, and we show that the use of Derivative–Free (DF)
optimization techniques (see [17] for a survey on DF optimization) can get much better results
than the classic optimization procedures available in commercial simulation softwares. Due to the
black–box nature of the simulation problem under analysis, the use of a DF optimization method is
essential in our framework. In particular, we use a DF method for solving Mixed Integer Nonlinear
Programming (MINLP) problems recently proposed in literature in [18]. The latter, unlike other
more traditional DF methods, is globally convergent towards points satisfying necessary optimality
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conditions. The distinguishing feature of this work consist in the application of such DF method
within the simulation optimization framework.

In our experiments, we use the Arena simulation software for building the DES model. Then,
we optimize the considered model by means of both the DF optimization method described in [18]
and the well–known OptQuest for Arena [19].

The paper is organized as follows: in Section 2, we give a description of the case study and of the
related DES model. We then report the optimization problem and the DF optimization algorithm
used in Sections 3 and 4, respectively. In Section 5, we show the results obtained. Finally, we draw
some conclusions in Section 6.

2 The case study

The case study considered the optimal resource allocation of the obstetrics ward of the Fatebene-
fratelli San Giovanni Calibita (FBF-SGC) Hospital in Rome. It is one of the most important
hospital of the Italian NHS [20] in terms of number of childbirth cases. The study was carried out
by a research group composed by doctors, engineers, statisticians and other experts in healthcare
within the project “Business Simulation for Healthcare (BuS-4H )”. The services under study were
the caesarean section without complications or comorbidities and the vaginal childbirth without
complications, namely DRG 371 and DRG 373 accordingly to the version 24 of the Diagnosis–
Related Groups (DRG) classification system [21]. The most important key performance indicators
(KPIs) and the hospital constraints were provided by the top managers of the FBF-SGC Hospital
taking into account regional and national government recommendations [22]. The data related to
hospitalizations (e.g. hospital discharge forms, hospital childbirth records, costs, incomes and other
services–related data) were imported and integrated into a single database.

The efficient management of the hospitalizations in an obstetrics ward is extremely important
both from clinical and economic point of view. In particular, the choice of the resources (number of
beds, gynecologists, nurses, midwives and so on) to be employed strongly affects the management
costs and the income as well as the quality of the services. The sources of the costs are several and
mainly due to staff salaries and management (and possible purchase) of medical equipments and
consumable goods. The income derives from the refunds through the NHS of the services delivered,
namely caesarean sections and vaginal childbirth. At each choice of the resources corresponds a
different “case mix”, i.e. a different number of patients to treat for each of the two DRGs. We
recall that case mix is usually considered the major indicator for managing and planning hospital
services.

In the allocation of the resources several constraints must be taken into account. They are
structural constraints or deriving from clinical and regulatory needs. A crucial role is played by
the rate of caesarean sections with respect to the overall childbirth. Indeed, due to the higher risk
for mother or child in the case of caesarean delivery [23], the rate of caesarean sections should be
lower than a suitable threshold value. Since 1985, the World Health Organization recommends a
rate not higher than 15%, but in many countries this value is often widely exceeded [24]. Moreover,
in recent decades the rate of caesarean sections have increased in most countries. NSH Italian
standard would require a threshold value of 25%, but in some Italian regions the value of 40% is
exceeded.
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2.1 The conceptual model

The conceptual model can be briefly summarized as follows: pregnant women go through the
Emergency Room—phase 1 of the service delivery (see Figure 2.1). At the beginning of this
phase, after a quick registration and verification, nurses perform the triage. A specialistic triage
is performed by obstetricians which eventually perform a fetal monitoring. Then, gynaecologists
visit each patient and confirm the assigned priority and the possible intervention. In particular,
they decide if hospitalization is necessary or not. If hospitalized, the patient arrives to the ward
(phase 2). In the FBF-SGC Hospital also pregnant women for which a caesarian section was
scheduled in advance arrive to the ER for registration and verification and then flow directly to the
ward. Usually, the hospitalization in the ward starts about one day before the childbirth and lasts
two days (three days) in the case of vaginal childbirth (caesarian section).

2.2 The simulation model

The simulation model of the FBF-SGC Hospital obstetric ward was implemented by using Arena 14

simulation software [25, 26], a general–purpose simulation environment and one of the most popular
DES software. The availability of an integrated database (as briefly discussed in the previous
section) allowed to perform an accurate input analysis, mainly regarding the determination of
the probability distribution of the operational time of each process. The verification and the
validation of the model were carried out to ensure that it performs properly and provides an
accurate representation of the real system. Furthermore, an appropriate design of experiments
allowed to determine the length of the simulation run (365 days), the number of replications (10)
and the warm–up period (42 days).

3 Statement of the simulation optimization problem

The optimal resource allocation problem of the obstetrics ward described in the previous section
can be mathematically stated in the following form

max f (z, t, y)

g1 (z, t, y) ≤ 0

... (3.1)

gm (x, t, y) ≤ 0

0 ≤ lz ≤ z ≤ uz

0 ≤ lt ≤ t ≤ ut.

In this problem z ∈ Z
p and t ∈ R

q are the decision variables of the services delivery model,
lz, uz ∈ Z

p, lt, ut ∈ R
q their lower and upper bounds, y ∈ R

r, with yj : Z
p × R

q −→ R, j = 1, . . . r,
represents an estimate of the expected values of the output of the service delivery model which
depends on z and t. The objective function f and the general constraints gi, i = 1, . . . ,m are real
valued functions, f, gi : Z

p × R
q × R

r −→ R. A simulation–based modeling approach is used since
the service delivery model cannot be expressed as closed–form function of z and t. More precisely,
z and t correspond to the resources of the simulation model which can be controlled by the user.
The vector y represents the output of the simulation model. In practice, the values yj = yj(z, t),
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Figure 2.1: Phase 1 of the services delivery conceptual model.
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j = 1, . . . , r, are obtained as an average over a certain number of independent replications of the
simulation. The resulting problem is a mixed integer nonlinearly constrained problem with box
constraints on the variables z and t.

In particular, in the case study the simulation model represents the services delivery of the
obstetrics ward of the FBF-SGC Hospital with p = 7 counters zi, i = 1, . . . , 7 of allocated resources
under control, q = 1 service demand indicator t1 under control (in hours), and r = 6 responses
yj = yj(z, t), j = 1, . . . , 6 of the simulation model. More in detail, the component of the vectors of
the decision variables are the following:

z1 : number of stretchers
z2 : number of gynecologists
z3 : number of gynecologists who discharge a patient from the hospital
z4 : number of nurses
z5 : number of midwives
z6 : number of hospital beds
z7 : number of operating rooms
t1 : mean value of the patient interarrival time (in hours).

Note that, t1 is not properly a resource. However, its value can be controlled by the hospital
management due to the possibility, in some cases, to reduce or rise admissions of patients by
adopting appropriate strategies.

The components of the output vector of the simulation model are the following (expressed as
number per year):

y1 : number of caesarean sections
y2 : number of vaginal childbirth
y3 : number of “extra” caesarean sections
y4 : number of “extra” vaginal childbirth
y5 : number of hospitalized woman having as a result no childbirth
y6 : number of woman transferred to another hospital before the childbirth

where “extra” means that, mainly due to the lack of resources in the ward (e.g. all stretchers or
beds are busy), both woman and newborn are not hospitalized in the FBF-SGC hospital but after
the delivery in the emergency room, they are transferred to another hospital.

3.1 The constraints

We derive all the constraints (box constraints on the variables and the general constraints) by also
taking into account the current conditions of the specific hospital ward.

The general constraints are described in the sequel.

– A lower bound on the number of caesarean sections is fixed in order to somehow represent
the minimum number of expected cesarean sections in the considered ward:

y1 ≥ 500.

– A lower bound on the overall number of childbirth per year is fixed in order to follow the
guidelines of the Italian NHS:

y1 + y2 ≥ 3500.
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– A lower bound on the overall patient occupation rate (defined as the ratio between the effective
overall length of the patients stay and the theoretical length of stay available) is fixed in order
to avoid the underutilization of the ward:

3.3(y2 − y4) + 5.0(y1 − y3) + 5.0y5
365(z1 + z6)

≥ 0.75.

– An upper bound on the number of transferred women before delivery is fixed in order to
minimize clinical risks:

y6 ≤ 0.25(y1 + y2).

– An upper bound on the rate of caesarean sections is fixed, as discussed in Section 2:

y1 − y3
y1 − y3 + y2 − y4

≤ 0.25. (3.2)

The box constraints for zi , i = 1 . . . , 7 are mainly due to budget and logistic restrictions, while
for t1 derive from specific clinical and managerial restrictions on patients admission. They are the
following:

8 ≤ z1 ≤ 15

2 ≤ z2 ≤ 7

1 ≤ z3 ≤ 3

1 ≤ z4 ≤ 5

2 ≤ z5 ≤ 9

33 ≤ z6 ≤ 45

1 ≤ z7 ≤ 3

1.000 ≤ t1 ≤ 4.000

with z6 = 3ℓ and ℓ ∈ Z the number of rooms in the ward.

3.2 The objective function

The aim is to obtain the values of the decision variables that both maximize the net profit and
ensure good performance of the ward, (i.e. satisfaction of the constraints). The objective function
can be stated as follows:

f(z, t, y) = 382.00(y1 − y3) + 309.00(y2 − y4)− 4500.00max{0, z1 − z01} − 10352.00max{0, z2 − z02}

−10352.00max{0, z3 − z03} − 9589.00max{0, z4 − z04} − 9589.00max{0, z5 − z05}

−5000.00max{0, z6 − z06} − 50000.00max{0, z7 − z07} − 2737.00z1 − 14600.00z6

where
(z0, t0) = (z01 , z02 , z03 , z04 , z05 , z06 , z07 , t01) = (10, 5, 1, 1, 6, 42, 1, 2.400) (3.3)

represents the current conditions. The first two terms in the objective function correspond to
the net profit (in euros) due to caesarean sections and vaginal childbirth, the terms of the form
cimax{0, zi− z0i } correspond to set up costs and the last two terms correspond to some additional
costs for stretchers and beds utilization.
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4 The optimization algorithm

In this section, we describe the algorithmic framework used to deal with the problem described in
the previous section. First, we note that, since the calculation of the objective function and con-
straint functions is obtained via numerical simulations, and some of the variables in the model are
constrained to be integer, the given problem is basically a Black–Box Mixed Integer Optimization
problem which we re–write in the following form

min f(x)

g1(x) ≤ 0

...

gm(x) ≤ 0

l ≤ x ≤ u

xi ∈ Z, i ∈ Iz,

(4.1)

where x ∈ R
n, f and gj , j = 1, . . . ,m are real valued functions and Iz ⊂ {1, . . . , n} is the set of

the indices of integer variables. The vectors l, u ∈ R
n are lower and upper bounds on the variables

x, with li ≤ ui for all i = 1, . . . , n and li, ui ∈ Z for all i ∈ Iz. Moreover, we denote by Ic the set
of the index of continuous variables, Ic = {1, . . . , n} \ Iz. In solving this problem we face with two
difficulties:

– the objective function f and constraints gi, i = 1, . . . m are of black–box type;

– some variables are discrete, requiring an ad–hoc treatment.

The first issue implies that the derivatives of f and gj , j = 1, . . . m are not available, preventing
the use of derivative–based optimization methods. On the other hand, finite differences derivative
approximation is inappropriate whenever the function evaluations are noisy, like in case of the
output of simulation runs. Thus Derivative–Free optimization methods must be considered (see
[17] for a recent survey on Derivative–Free methods).

As regards the second issue, the presence of discrete variables increases the difficulty of the
optimization process. However, in literature, various Derivative–Free methods have been proposed
for solving MINLP problems (see e.g. [27, 28, 29, 30, 31, 32, 33, 34, 35]). In particular, we adopted
the Derivative–Free Linesearch (DFL) algorithm for MINLP problems described in [18]. It is based
on an exterior penalty approach for handling the general nonlinear constraints while the bound
constraints on the variables are handled directly. Continuous variables are managed by means of
a linesearch procedure ensuring a sufficient decrease condition. Discrete variables are treated by
using a suitable local search procedure which explores discrete neighborhoods of points. Now, in
order to give a description of the procedure, we report the assumptions, some definitions and the
major convergence result from [18].

As concerns the assumptions, the objective function f and the general nonlinear constraints
function gj , j = 1, . . . ,m, are assumed to be continuously differentiable with respect to xi, i ∈ Ic,
even thought the derivatives currently are not used. This assumption is commonly used in analyzing
the global convergence of the directional direct–search methods. For other technical assumptions
we refer to [18].

Now, we report the definition of the following sets which will be used in the sequel:

X := {x ∈ R
n : l ≤ x ≤ u}, F = {x ∈ R

n : g(x) ≤ 0} ∩ X , Z := {x ∈ R
n : xi ∈ Z, i ∈ Iz}.
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Moreover, for any vector v ∈ R
n, vc ∈ R

|Ic| and vz ∈ R
|Iz| denote the subvectors

vc = [vi]i∈Ic , vz = [vi]i∈Iz .

Futhermore, since the characterization of local minimizers in mixed problems strongly depends on
the particular neighborhood used, we need to report different definitions of neighborhoods that
correspond to variations of continuous and discrete variables. Hence, for any point x̄ ∈ R

n and
ρ > 0, the following definitions are given:

Bc(x̄, ρ) = {x ∈ R
n : xz = x̄z, ‖xc − x̄c‖2 ≤ ρ} ,

Bz(x̄) = {x ∈ Z : xc = x̄c, ‖xz − x̄z‖2 = 1} .

Now we are ready to report the definition of local minimizer (see Definition 2.1 of [18]):

Definition 4.1 A point x⋆ ∈ F ∩ Z is a local minimizer of Problem (4.1) if, for some ǫ > 0,

f(x⋆) ≤ f(x), for all x ∈ Bc(x
⋆; ǫ) ∩ F ,

f(x⋆) ≤ f(x), for all x ∈ Bz(x
⋆) ∩ F .

Under standard assumptions (see [18] for a complete description of the assumptions adopted),
it is possible to give stationary conditions for Problem (4.1). The latter conditions make use
of the Lagrangian function associated to Problem (4.1), namely L(x, λ) = f(x) +

∑m
i=1

λigi(x).
The following proposition (see [18]), reports the necessary optimality conditions for Problem (4.1).
Here the notation ∇cL(x, λ) is used to denote the gradient of the function L with respect to the
continuous variables.

Proposition 4.2 Let x⋆ ∈ F ∩Z be a local minimizer of Problem (4.1). Then there exists a vector
λ⋆ ∈ R

m such that
∇cL(x

⋆, λ⋆)T (x− x⋆)c ≥ 0, for all x ∈ X (4.2)

(λ⋆)T g(x⋆) = 0 λ⋆ ≥ 0 (4.3)

f(x⋆) ≤ f(x) for all x ∈ Bz(x
⋆) ∩ F . (4.4)

Finally, we report the definition of stationary point for Problem (4.1) (see Definition 2.3 of [18]).

Definition 4.3 A point x⋆ ∈ F ∩ Z is a stationary point of Problem (4.1) if a vector λ⋆ ∈ R
m

exists such that the pair (x⋆, λ⋆) satisfies (4.2), (4.3) and (4.4).

Now, in order to give a description of the Derivative–Free algorithm we use, we report the
penalty function used to handle the general constraints. As in [36], the following sequential penalty
function

P (x; ǫ) := f(x) +
1

ǫ

m∑

i=1

max{0, gi(x)}
s, with s > 1 (4.5)

is used and the original problem is solved by means of a sequence of penalty problems of the form

minP (x; ǫ)
x ∈ X ∩ Z,
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A Derivative–Free MINLP framework

Input: an initial point x0 ∈ X , a decrease parameter ξ0 > 0, a penalty parameter ǫ0 > 0,
a set of stepsizes αi

0 > 0, i = 1, . . . , n and a set of search directions di0 = ei, i = 1, . . . , n .

Output: a stationary point of Problem (4.1).

Set k = 0.
repeat

Set y1k = xk
for i = 1, 2, . . . , n do

if i-th variable is continuous
then compute an α continuous stepsize along the i-th search direction enforcing

(αi
k)

2-sufficient decrease by Continuous search(αi
k, y

i
k, d

i
k;α)

else compute an α discrete stepsize along the i-th search direction enforcing
ξk-sufficient decrease by Discrete search(αi

k, y
i
k, d

i
k, ξk;α)

end if
Set new point yi+1

k = yik + αdik and update αi
k+1

.
end for
Find xk+1 ∈ X ∩ Z s.t. P (xk+1, ǫk) ≤ P (yn+1

k , ǫk).
Use updating rule to obtain ǫk+1 and ξk+1.
Set k = k + 1.

until convergence

Figure 4.1: Scheme of the Derivative–Free algorithm

where penalization of constraint violation is progressively increased. In Figure 4.1 we report the
basic scheme of the Derivative–Free framework for MINLP problems we use.

The described method, like many other Derivative–Free techniques, is based on a suitable
sampling strategy along a set of directions. Such directions are given by dik ∈ {−e

i, ei} (see
Continuous and Discrete searches detailed later on in Figure 4.2 and in Figure 4.3). This strategy
is able to get, in the limit, sufficient knowledge of the problem functions (by using the Continuous
and Discrete search) to recover both first order information for the continuous variables, and some
sort of local optimality for the discrete ones. Anyway, since we are in a constrained context, we
need to take also care of the penalty parameter (i.e. the penalty parameter has to be updated
and, as we said before, progressively driven to zero), by somehow connecting it to the sampling
technique. Roughly speaking, the penalty parameter must converge to zero more slowly than the
maximum stepsize used by the sampling scheme. This is the reason why we need, other than the
updating rules for the stepsizes αi and for the updating of ξ (the parameter driving the sufficient
decrease in the Discrete search), a rule for the updating of the parameter ǫ.

Summarizing, the main features of the algorithm are four:

1. the Continuous search, which performs a classic Derivative–Free linesearch (see e.g. [37])
guaranteeing a sufficient decrease of the objective function;

2. the Discrete search, which performs a Derivative–Free linesearch in a “discrete fashion”;
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3. the updating rule for the stepsizes αi;

4. the updating rule for the penalty parameter ǫ and the parameter ξ.

All these ingredients are needed to guarantee convergence of the algorithm to stationary points
of the original problem.

Now, we give some details about those features. The updating rule for the stepsizes αi is very
simple as either it sets the stepsize to the α given by the related search in case a sufficient decrease
is obtained, or it shrinks the stepsize in case of failure. The updating rule for the parameters ǫ and
ξ works as follows: if no discrete variable has been updated and all the tentative steps along discrete
coordinates are equal to one, the sufficient reduction parameter is decreased, and the procedure
further checks if the penalty parameter has to be updated. We report the detailed schemes of
Continuous and Discrete search in Figure 4.2 and Figure 4.3, respectively.

Continuous search(α̃, y, d;α).

Data. γ > 0, δ ∈ (0, 1).

Step 1. Compute the largest ᾱ such that y + ᾱd ∈ X ∩ Z. Set α = min{ᾱ, α̃}.

Step 2. If α > 0 and P (y + αd) ≤ P (y)− γα2 then go to Step 6.

Step 3. Compute the largest ᾱ such that y − ᾱd ∈ X ∩ Z. Set α = min{ᾱ, α̃}.

Step 4. If α > 0 and P (y − αd) ≤ P (y)− γα2 then set d = −d and go to Step 6.

Step 5. Set α = 0 and return.

Step 6. While

(
α < ᾱ and P

(
y +

α

δ
d

)
≤ P (y)− γ

α2

δ2

)

α← α/δ.

Step 7. Set α← min{ᾱ, α} and return.

Figure 4.2: Scheme of the continuous search procedure

The Continuous search procedure is defined by specifying values for parameters γ and δ which
are used, respectively, in the sufficient reduction criterion and for the expansion of the step. The
main distinguishing feature of the Discrete search procedure with respect to the Continuous search
consists in the sufficient decrease criterion which employs the decrease parameter ξ instead of the
usual squared stepsize which, for a discrete variable, is bounded away from zero. Indeed, we say
that the new trial point (y±αd) guarantees a sufficient decrease of the penalized objective function
value when its value is better than P (y)− ξ.

As regards the convergence properties of the algorithm, we now report the main theoretical
result concerning the global convergence (see [18]).
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Discrete search(α̃, y, d, ξ;α).

Step 1. Compute the largest ᾱ such that y + ᾱd ∈ X ∩ Z. Set α = min{ᾱ, α̃}.

Step 2. If α > 0 and P (y + αd) ≤ P (y)− ξ then go to Step 6.

Step 3. Compute the largest ᾱ such that y − ᾱd ∈ X ∩ Z. Set α = min{ᾱ, α̃}.

Step 4. If α > 0 and P (y − αd) ≤ P (y)− ξ then set d = −d and go to Step 6.

Step 5. Set α = 0 and return.

Step 6. While
(
α < ᾱ and P (y + 2αd) ≤ P (y)− ξ

)

α← 2α.

Step 7. Set α← min{ᾱ, α} and return.

Figure 4.3: Scheme of the discrete search procedure

Theorem 4.4 Let {xk} and {ǫk} be the sequences generated by the algorithm. Let

Kξ = {k : ξk+1 < ξk} ⊆ {1, 2, . . .} and Kǫ = {k : ξk+1 < ξk, ǫk+1 < ǫk} ⊆ Kξ

Then, the sequence {xk} admits limit points and

(i) if lim
k→∞

ǫk = ǭ, every limit point of {xk}k∈Kξ
is stationary for Problem (4.1);

(ii) if lim
k→∞

ǫk = 0, every limit point of {xk}k∈Kǫ
is stationary for Problem (4.1).

Roughly speaking, this theorem guarantees that in any case the algorithm generates a subsequence
converging to a stationary point. Indeed, every iterate xk belongs to X which is compact, thus the
sequence {xk} admits limit points. Then (i) and (ii) are obtained by means of the properties of
the two linesearch techniques which take into account the different nature of the variables.

5 Results and discussion

In order to determine an optimal solution of the MINLP problem described in Section 3, we used
a Fortran 90 implementation of the DFL algorithm described in Section 4. The source code of
the algorithm is available at http://www.dis.uniroma1.it/ ˜ lucidi/DFL. The parameters in
the algorithm have been set to the same values reported in [18]. The value s = 1.1 has been used
in (4.5). Of course, it was necessary to create an interface between the fortran code and Arena

simulation software. To this aim, we used the Visual Basic for Applications (VBA) tool included in
Arena which enables to build custom user interfaces to Arena models and to transfer data to/from
Arena.

The procedure used is the following: the DFL algorithm selects the values for the decision
variables (z, t) which represents the input parameters of the simulation model. These values are
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transferred to Arena model and the simulation is run, for the prefixed number of independent
replications, in order to obtaining an estimate of the system performance, namely the components
of the output vector y. The DFL algorithm uses these responses from Arena to choose the next set
of values for the decision variables. The loop is carried on until the stopping criterion is satisfied.

The problem in hand was also solved by using OptQuest for Arena [19]. For both the algo-
rithms we used as starting point the one corresponding to the current condition (z0, t0) reported
in (3.3). It is important to notice that such point is infeasible for the problem since the constraint
(3.2), imposing an upper bound on the caesarean sections rate, is not satisfied at this point.

As regards the stopping criterion of the DFL algorithm the iterations are terminated whenever
a reduction of the penalized objective function is not obtained when using a unitary step with
respect to the discrete variables and a step lower than 10−6 with respect to the continuous vari-
ables. As regards OptQuest, we used the automatic stop with tolerance 10−6. We monitored the
computational burden by counting the number of simulations needed by an algorithm for satisfying
the stopping criterion. Note that the number of simulations coincides with the number of function
evaluations (objective and constraints functions in (3.1)). Indeed, the latter functions can be eval-
uated at a given point (z, t, y) only if the responses from the simulation, namely the output vector
y, has been obtained.

In Table 5.1 we report, for each algorithm, the optimal value of the decision variables, the
optimal objective function value (in euros) and the number of simulations needed. For a comparison
with the current operating condition, we also report the value of the variables corresponding to
this condition along with the (simulated) objective function value.

number of
z1 z2 z3 z4 z5 z6 z7 t1[hours] f [euros] simulations

(z0, t0) 10 5 1 1 6 42 1 2.400 400,876.00 —
OptQuest 14 5 2 1 5 42 1 1.738 548,672.00 1777
DFL Algorithm 15 5 1 1 6 39 1 1.822 565,368.00 215

Table 5.1: Resources and objective function values corresponding to the current operating condi-
tion (z0, t0) and to the optimal value obtained by the two algorithms along with the number of
simulations needed.

In Table 5.2 we report the values of the responses obtained by the simulation model corre-
sponding to the three configurations detailed in Table 5.1. By observing Table 5.1 it can be clearly

y1 y2 y3 y4 y5 y6
y0 883.40 2514.70 12.80 220.60 1080.00 551.70
OptQuest 944.60 3266.00 24.10 428.10 945.40 949.20
DFL Algorithm 909.30 3176.10 21.80 395.20 961.90 881.00

Table 5.2: Corresponding responses of the simulation model.

pointed out that the use of the DFL Algorithm allowed us to obtain a better solution in terms of
objective function value (the net profit) with respect to the one obtained by OptQuest. Moreover,
DFL Algorithm clearly outperforms OptQuest in terms of computational effort required. Indeed
OptQuest needs 1777 simulations against 215 simulations required by the DFL Algorithm. As
regards the optimal solution determined by the DFL Algorithm, by comparing the optimal values
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of the decision variables with respect to those corresponding to the current condition, it can be
observed that some of them remains unchanged (z2, z3, z4, z5, z7). They concern human resources
(number of gynecologist, nurses, midwives) and a structural resource (the number of operating
rooms), whereas changes are expected in the number of stretchers and beds. Moreover, the optimal
values of t1 corresponds to an increase of the average number of patients arriving in a day. In fact,
the interarrival time between two subsequent patients passes from 2.4 hours to 1.822 hours. We
recall that the hospital management can control the value of this parameter by means of appro-
priate strategies. On the overall, it is important to note that the optimal solution obtained by the
DFL Algorithm is easy to adopt in practice since it only requires few changes with respect to the
current condition and these changes do not regard human resources. On the opposite, OptQuest
suggests to increase the number of gynecologists who discharge patients and to decrease the number
of obstetricians.

As regards the values of the responses, Table 5.2 evidences that by adopting the solutions ob-
tained by both the DFL Algorithm and OptQuest a significant increase of y2 (number of vaginal
childbirth) is expected with respect to the current situation. But the most interesting point in both
solutions is the increase of y3, y4, y6 (which is slightly lower for the solution obtained by DFL Algo-
rithm, probably due to different human resource allocation). In any case, the solution we obtained
suggested to the hospital managers to increase the ER emergency activities related to childbirth
in order to satisfy, among others, the constraint on the rate of caesarean sections, still improving
the profit. This results in a very interesting intermediate condition between hospitalization (i.e.
the common practice in Italy) and assisted childbirth at home (which is a novelty proposed by the
Lazio Region of Italy) in terms of clinical risk and economical benefits both for newborns, woman,
hospitals and the NHS.

6 Concluding remarks

In this work we proposed the use of a derivative–free optimization algorithm within the simulation–
based optimization framework. In particular, we considered a real–world problem arising in hospital
management, namely the optimal resource allocation of the obstetric ward of an Italian hospital.
We showed that the approach we propose is effective, both in terms of quality of the solution
obtained and in terms of efficiency, outperforming standard approaches based on heuristic methods
usually embedded within simulation software packages. On the overall, the results obtained on this
case study indicate that the use of derivative–free optimization algorithms within simulation–based
optimization is very promising. Future works related to the specific healthcare problems concerns
the use of a multiobjective formulation of the optimal resource allocation problem. This extension
is motivated by the observation that contrasting goals very often arise in this context.
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