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1 Introduction

For a set V and a positive integer r, let V (r) be the family of all r-subsets of V . An r-uniform
graph or r-graph G consists of a set V (G) of vertices and a set E(G) ⊆ V (G)(r) of edges. An edge
e = {a1, a2, . . . , ar} will be simply denoted by a1a2 . . . ar. An r-graph H is a subgraph of an r-graph

G, denoted by H ⊆ G if V (H) ⊆ V (G) and E(H) ⊆ E(G). Let K
(r)
t denote the complete r-graph

on t vertices, that is the r-graph on t vertices containing all possible edges. A complete r-graph on
t vertices is also called a clique with order t. A clique is said to be maximal if there is no other
clique containing it, while it is called maximum if it has maximum cardinality. The clique number
of a r-graph G, denoted as ω(G), is defined as the cadinality of the maximum clique. Let N be the
set of all positive integers. For an integer n ∈ N, let [n] denote the set {1, 2, 3, . . . , n}. Let [n](r)

represent the complete r-graph on the vertex set [n]. When r = 2, an r-graph is a simple graph.
When r ≥ 3, an r-graph is often called a hypergraph.

For an r-graph G := (V,E), denote the (r − 1)-neighborhood of a vertex i ∈ V by Ei := {A ∈
V (r−1) : A ∪ {i} ∈ E}. Similarly, denote the (r − 2)-neighborhood of a pair of vertices i, j ∈ V by
Eij := {B ∈ V (r−2) : B∪{i, j} ∈ E}. Denote the complement of Ei by Ec

i := {A ∈ V (r−1) : A∪{i} ∈
V (r)\E}. Also, denote the complement of Eij by Ec

ij := {B ∈ V (r−2) : B∪{i, j} ∈ V (r)\E}. Denote
Ei\j := Ei ∩ Ec

j . An r-graph G = ([n], E) is left-compressed if j1j2 · · · jr ∈ E implies i1i2 · · · ir ∈ E
provided ip ≤ jp for every p, 1 ≤ p ≤ r. Equivalently, an r-graph G = ([n], E) is left-compressed if
Ej\i = ∅ for any 1 ≤ i < j ≤ n.

Definition 1 For an r-uniform graph G with the vertex set [n], edge set E(G), and a vector
x = (x1, . . . , xn) ∈ R

n, we associate a homogeneous polynomial in n variables, denoted by λ(G,x)
as follows:

λ(G,x) =
∑

i1i2···ir∈E(G)

xi1xi2 . . . xir .

Let S = {x = (x1, x2, . . . , xn) :
∑n

i=1 xi = 1, xi ≥ 0 for i = 1, 2, . . . , n}. Let λ(G) represent the
maximum of the above homogeneous multilinear polynomial of degree r over the standard simplex
S. Precisely

λ(G) = max{λ(G,x) : x ∈ S}.

The value xi is called the weight of the vertex i. A vector x := (x1, x2, . . . , xn) ∈ R
n is called a

feasible weighting for G iff x ∈ S. A vector y ∈ S is called an optimal weighting for G iff λ(G,y) =
λ(G). We call λ(G) the Graph-Lagrangian of hypergraph G, for abbreviation, the Lagrangian of G.

The following fact is easily implied by Definition 1.

Fact 1 Let G1, G2 be r-uniform graphs and G1 ⊆ G2. Then λ(G1) ≤ λ(G2).

The maximum clique problem is a classical problem in combinatorial optimization which has impor-
tant applications in various domains. In [6], Motzkin and Straus established a remarkable connection
between the clique number and the Lagrangian of a graph.

Theorem 1 ([6]) If G is a 2-graph with clique number t then λ(G) = λ(K
(2)
t ) = 1

2 (1 −
1
t
).

The obvious generalization of Motzkin and Straus’ result to hypergraphs is false because there
are many examples of hypergraphs that do not achieve their Lagrangian on any proper subhy-
pergraph. Lagrangians of hypergraphs has been proved to be a useful tool, for example, it is
useful to hypergraph extremal problems. Applications of Lagrangian method can be found in
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[2–5, 10]. In most applications, an upper bound is needed. Frankl and Füredi [2] asked the fol-
lowing question. Given r ≥ 3 and m ∈ N how large can the Lagrangian of an r-graph with
m edges be? For distinct A,B ∈ N

(r) we say that A is less than B in the colex ordering if
max(A△B) ∈ B, where A△B = (A \ B) ∪ (B \ A). For example we have 246 < 156 in N

(3) since
max({2, 4, 6}△{1, 5, 6}) ∈ {1, 5, 6}. In colex ordering, 123 < 124 < 134 < 234 < 125 < 135 < 235 <
145 < 245 < 345 < 126 < 136 < 236 < 146 < 246 < 346 < 156 < 256 < 356 < 456 < 127 < · · · .
Note that the first

(

t
r

)

r-tuples in the colex ordering of N(r) are the edges of [t](r). The following
conjecture of Frankl and Füredi (if it is true) proposes a solution to the question mentioned above.

Conjecture 1 ([2]) The r-graph with m edges formed by taking the first m sets in the colex ordering
of N(r) has the largest Lagrangian of all r-graphs with m edges. In particular, the r-graph with

(

t
r

)

edges and the largest Lagrangian is [t](r).

This conjecture is true when r = 2 by Theorem 1. For the case r = 3, Talbot in [12] proved the
following.

Theorem 2 ([12]) Let m and t be integers satisfying
(

t−1
3

)

≤ m ≤
(

t−1
3

)

+
(

t−2
2

)

− (t − 1). Then

Conjecture 1 is true for r = 3 and this value of m. Conjecture 1 is also true for r = 3 and m =
(

t

3

)

−1

or m =
(

t

3

)

− 2.

Further evidence that supports Conjecture 1 can be found in [13, 14]. In particular, Conjecture 1
is true for r = 3 and

(

t
3

)

− 6 ≤ m ≤
(

t
3

)

(see [13, 14]).
Although the obvious generalization of Motzkin and Straus’ result to hypergraphs is false, we

attempt to explore the relationship between the Lagrangian of a hypergraph and its cliques number
for hypergraphs when the number of edges is in certain ranges. In [7], it is conjectured that the
following Motzkin and Straus type results are true for hypergraphs.

Conjecture 2 Let t, m, and r ≥ 3 be positive integers satisfying
(

t−1
r

)

≤ m ≤
(

t−1
r

)

+
(

t−2
r−1

)

. Let G

be an r-graph with m edges and G contain a clique of order t− 1. Then λ(G) = λ([t− 1](r)).

The upper bound
(

t−1
r

)

+
(

t−2
r−1

)

in this conjecture is the best possible. Whenm =
(

t−1
r

)

+
(

t−2
r−1

)

+1,

let Cr,m be the r-graph with the vertex set [t] and the edge set [t− 1](r) ∪{i1 · · · ir−1t : i1 · · · ir−1 ∈
[t− 2](r−1)}∪{1 · · · (r− 2)(t− 1)t}. Take a legal weighting x := (x1, . . . , xt), where x1 = x2 = · · · =
xt−2 = 1

t−1 and xt−1 = xt =
1

2(t−1) . Then λ(Cr,m) ≥ λ(Cr,m,x) > λ([t− 1](r)).

Conjecture 3 Let G be an r-graph with m edges without containing a clique of size t − 1, where
(

t−1
r

)

≤ m ≤
(

t−1
r

)

+
(

t−2
r−1

)

. Then λ(G) < λ([t− 1](r)).

Let Cr,m denote the r-graph with m edges formed by taking the first m sets in the colex ordering
of N(r). The following result was given in [12].

Lemma 1 [12] For any integers m, t, and r satisfying
(

t−1
r

)

≤ m ≤
(

t−1
r

)

+
(

t−2
r−1

)

, we have

λ(Cr,m) = λ([t− 1](r)).

Remark 1 Conjectures 2 and 3 refine Conjecture 1 when
(

t−1
r

)

≤ m ≤
(

t−1
r

)

+
(

t−2
r−1

)

. If Conjectures
2 and 3 are true, then Conjecture 1 is true for this range of m.

In [7], we showed that Conjecture 2 holds when r = 3 as in the following Theorem.
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Theorem 3 ([7]) Let m and t be positive integers satisfying
(

t−1
3

)

≤ m ≤
(

t−1
3

)

+
(

t−2
2

)

. Let G be

a 3-graph with m edges and contain a clique of order t− 1. Then λ(G) = λ([t− 1](3)).

In this paper, we will show the following.

Theorem 4 Let m and t be integers satisfying
(

t−1
3

)

≤ m ≤
(

t−1
3

)

+
(

t−2
2

)

− 1
2 (t − 1). Let G be a

3-graph with m edges without containing a clique order of t− 1, then λ(G) < λ([t− 1](3)).

Combing Theorems 3 and 4, we have the follow result on Conjecture 1.

Corollary 1 Let m and t be integers satisfying
(

t−1
3

)

≤ m ≤
(

t−1
3

)

+
(

t−2
2

)

− 1
2 (t − 1). Then

Conjecture 1 is true for r = 3 and this value of m.

Note that Theorem 4 supports Conjecture 3 and Corollary 1 improves Thoerem 2.
The rest of the paper is organized as follows. In section 3, we prove Theorem 4. In section 4,

we explore the connection between the clique number and the Lagrangians of some left-compressed
3-graphs. As an application, we obtain two weaker versions of Tuán type result. First we give some
useful results.

2 Useful Results

We will impose one additional condition on any optimal weighting x = (x1, x2, . . . , xn) for an
r-graph G:

|{i : xi > 0}| is minimal, i.e. if y is a legal weighting for G satisfying

|{i : yi > 0}| < |{i : xi > 0}|, then λ(G,y) < λ(G). (1)

When the theory of Lagrange multipliers is applied to find the optimum of λ(G,x), subject to
∑n

i=1 xi = 1, notice that λ(Ei,x) corresponds to the partial derivative of λ(G,x) with respect to
xi. The following lemma gives some necessary conditions of an optimal weighting for G.

Lemma 2 ([3]) Let G := (V,E) be an r-graph on the vertex set [n] and x = (x1, x2, . . . , xn) be
an optimal weighting for G with k (≤ n) non-zero weights x1, x2, · · ·, xk satisfying condition (1).
Then for every {i, j} ∈ [k](2), (a) λ(Ei,x) = λ(Ej ,x) = rλ(G), (b) there is an edge in E containing
both i and j.

Remark 2 (a) In Lemma 2, part(a) implies that

xjλ(Eij ,x) + λ(Ei\j ,x) = xiλ(Eij ,x) + λ(Ej\i,x).

In particular, if G is left-compressed, then

(xi − xj)λ(Eij ,x) = λ(Ei\j ,x)

for any i, j satisfying 1 ≤ i < j ≤ k since Ej\i = ∅.
(b) If G is left-compressed, then for any i, j satisfying 1 ≤ i < j ≤ k,

xi − xj =
λ(Ei\j ,x)

λ(Eij ,x)
(2)

holds. If G is left-compressed and Ei\j = ∅ for i, j satisfying 1 ≤ i < j ≤ k, then xi = xj .
(c) By (2), if G is left-compressed, then an optimal legal weighting x = (x1, x2, . . . , xn) for G

must satisfy
x1 ≥ x2 ≥ . . . ≥ xn ≥ 0. (3)
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The following lemma implies that we only need to consider left-compressed r-graphs when Conjec-
ture 1 is explored.

Lemma 3 ([12]) Let m, t be positive integers satisfying m ≤
(

t

r

)

− 1, then there exists a left-
compressed r-graph G with m edges such that λ(G) = λr

m.

3 Proof of Theorem 4

The following lemma showed in [9] implies that we only need to consider left-compressed 3-graphs
G on t vertices to verify Conjecture 3 for r = 3. Denote

λr−
(m,t) := max{λ(G) : G is an r - graph with m edges and does not contain a clique of size t} .

Lemma 4 [9] Let m and t be positive integers satisfying
(

t−1
3

)

≤ m ≤
(

t−1
3

)

+
(

t−2
2

)

. Then there
exists a left-compressed 3-graph G on the vertex set [t] with m edges and not containing a clique of
order t− 1 such that λ(G) = λ3−

(m,t−1).

Proof of Theorem 4. Let
(

t−1
3

)

≤ m ≤
(

t−1
3

)

+
(

t−2
2

)

− 1
2 (t − 1). Let G be a 3-graph with m edges

without containing [t−1](3) such that λ(G) = λ3−
(m,t−1). To prove Theorem 4, we only need to prove

λ3−
(m,t−1) = λ(G) < λ([t− 1](3)).

By Lemma 4, we can assume that G is left-compressed. Let x = (x1, x2, . . . , xn) be an optimal
weighting for G. By Remark 2(a), x1 ≥ x2 ≥ . . . ≥ xk > xk+1 = . . . = xn = 0. If k ≤ t − 1,
λ(G) < λ([t− 1](3)) since G does not contain a clique order of [t− 1]. So we assume k ≥ t. First we
show that k = t. Wee need the following lemma.

Lemma 5 [12] Let G := (V,E) be a left-compressed 3-graph with m edges such that λ(G) = λ3
m.

Let b := |E(k−1)k|. Let x := (x1, x2, . . . , xk) be an optimal weighting for G satisfying x1 ≥ x2 ≥
. . . ≥ xk > xk+1 = . . . = xn = 0. Then

|[k − 1](3)\E| ≤ ⌈b(1 +
k − (b+ 2)

k − 3
)⌉.

Since G is left-compressed and 1(k − 1)k ∈ E, then |[k − 2](2) ∩ Ek| ≥ 1. If k ≥ t + 1, then
applying Lemma 5, we have |[k − 1](3)\E| ≤ k − 2. Hence

m = |E| = |E ∩ [k − 1](3)|+ |[k − 2](2) ∩ Ek|+ |E(k−1)k|

≥

(

t

3

)

− (t− 1) + 2

≥

(

t− 1

3

)

+

(

t− 2

2

)

+ 1, (4)

which contradicts to the assumption that m ≤
(

t−1
3

)

+
(

t−2
2

)

. Recall that k ≥ t, so we have

k = t.

Hence we can assume G is on vertex set [t].
Next we prove an inequality.
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Lemma 6 Let G be a 3-graph on the vertex set [t]. Let x := (x1, x2, . . . , xt) be an optimal weighting
for G satisfying x1 ≥ x2 ≥ . . . ≥ xt ≥ 0. Then

x1 < xt−3 + xt−2 or λ(G) ≤
1

6

(t− 3)2

(t− 2)(t− 1)
< λ([t− 1](3)).

Proof If x1 ≥ xt−3 + xt−2, then

3x1 + x2 + · · ·+ xt−4 > x1 + x2 + · · ·+ xt−4 + xt−3 + xt−2 + xt−1 + xt = 1.

Recall that x1 ≥ x2 ≥ . . . ≥ xt−4, we have x1 > 1
t−2 . Using Lemma 2, we have

λ(G) =
1

3
λ(E1, x) ≤

1

3

(

t− 1

2

)

(
1− 1

t−2

t− 1
)2

=
1

6

(t− 3)2

(t− 2)(t− 1)
<

1

6

(t− 3)(t− 2)

(t− 1)2
= λ([t − 1](3)).

The first inequality follows from Theorem 1. Hence λ(G) < λ([t − 1](3)), which contradicts to
λ(G) ≥ λ([t− 1](3)). This completes the proof. ⊓⊔

The following lemma is proved in [15].

Lemma 7 ([15], Lemma5.3) Let G be a left-compressed 3-graph on the vertex set [t]. Let x :=
(x1, x2, . . . , xt) be an optimal weighting for G. Then |[t− 1](3)\E| ≤ t− 3, or λ(G) ≤ λ([t− 1](3)).

Remark 3 We can prove that |[t − 1](3)\E| ≤ t − 3, or λ(G) < λ([t − 1](3)) under the condition of
Lemma 7 through the method in [15].

Now we continue the proof of Theorem 4. Let D = [t − 1](3)\E. Let b = |E(t−1)t|. By Lemma

5, we have |D| ≤ 2b. So ⌊ |D|
2 ⌋ ≤ b and the triples 1(t − 1)t, · · · ⌊ |D|

2 ⌋(t − 1)t are in G. Let G′ =

G
⋃

D\{1(t − 1)t, · · · ⌊ |D|
2 ⌋(t − 1)t}. If λ(G) < λ([t − 1](3)), we are done. Otherwise by Remark 3

we have |D| ≤ t− 3. So

|G′| = |G|+ |D| − ⌊
|D|

2
⌋ ≤

(

t− 1

3

)

+

(

t− 2

2

)

−
1

2
(t− 1) + t− 3−

t− 3

2
+ 1

=

(

t− 1

3

)

+

(

t− 2

2

)

.

Note that G′ contains [t− 1](3). By Theorem 3, we have λ(G′,x) ≤ λ(G′) = λ([t− 1](3)).
Next we show that λ(G,x) < λ(G′,x). By Remark 2(b), x1 = x2 = · · · = x

⌊
|D|
2 ⌋

. Hence

λ(G′,x)− λ(G,x) = λ(D,x)− ⌊
|D|

2
⌋x1xt−1xt

≥ |D|xt−3xt−2xt−1 − ⌊
|D|

2
⌋x1xt−1xt

> |D|xt−3xt−2xt−1 − ⌊
|D|

2
⌋(xt−3 + xt−2)xt−1xt.

In the last step, we used Lemma 6. Recall that x1 ≥ x2 ≥ . . . ≥ xt > 0, we have

|D|xt−3xt−2xt−1 − ⌊
|D|

2
⌋(xt−3 + xt−2)xt−1xt ≥ |D|xt−3xt−2xt−1 − |D|xt−3xt−1xt ≥ 0.

Hence λ(G,x) < λ(G′,x) ≤ λ([t− 1](3)) = λ(C3,m). This completes the proof of Theorem 4. ⊓⊔
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4 Connection between the clique number and the Lagrangians of some
left-compressed 3-graphs

In this section, we will confirm Conjecture 1 and Conjecture 3 for some left-compressed 3-graphs
with specified structures. As an application, we also obtain two weaker versions of Turán type result
for left-compressed 3-graphs.

Theorem 5 Let G := (V,E) be a left-compressed 3-graph on vertex set [t] and G does not contain
a clique order of ⌊ t−2

2 ⌋. Then

λ(G) ≤
1

6

(t− 3)2

(t− 2)(t− 1)
< λ([t− 1](3)).

Proof The idea to prove Theorem 5 is similar to that in the proof of Lemma 6. Let G := (V,E) be
a left-compressed 3-graph with m edges and ω(G) ≤ ⌊ t−2

2 ⌋. Recall ω(G) is the clique number of G.
If t ≤ 5, Theorem 5 clearly holds. Next we assume t ≥ 6. Let x = (x1, x2, . . . , xt) be an optimal
weighting for G satisfying, x1 ≥ x2 ≥ . . . ≥ xt. The clique number of Et−3 must be smaller than
t−2
2 , otherwise ω(G) > ⌊ t−2

2 ⌋ since G is left-compressed. By Lemma 6, if λ(G) > 1
6

(t−3)2

(t−2)(t−1) , we

have xt−3 > 1
2t . Using Lemma 2 and Theorem 1, we have

λ(G) =
1

3
λ(Et, x) <

1

3

(

⌊ t−2
2 ⌋

2

)

(
1− 1

2t

⌊ t−2
2 ⌋

)2

≤
1

6

t− 4

t− 2

(2t− 1)2

4t2

<
1

6

(t− 3)2

(t− 2)(t− 1)
.

which is a contradiction. This completes the proof. ⊓⊔

Corollary 2 Let G := (V,E) be a left-compressed 3-graph with t vertices and m edges. If m ≥
(t−3)2t3

6(t−2)(t−1) , then G contains a clique order of ⌊ t−2
2 ⌋.

Proof Let G := (V,E) be a 3-graph with t vertices and m edges. Assume that m ≥ (t−3)2

6(t−2)(t−1) t
3.

Clearly, x1 = x2 = · · · = xt = 1
t
is a legal weighting for G. Hence λ(G) ≥ (t−3)2

6(t−2)(t−1) t
3 1
t3

=
(t−3)2

6(t−2)(t−1) . However by Theorem 5 we know that λ(G) < (t−3)2

6(t−2)(t−1) if G does not contain a clique

order of ⌊ t−2
2 ⌋. This completes the proof. ⊓⊔

For the case of forbiding a clique of order 4, we have the following result.

Proposition 1 Let G be a left-compressed 3-uniform graph on [t] with m edges. If G does not
contain a clique of order 4, then m ≤ 2

27 t
3.

Proof Let x := (x1, x2, . . . , xt) be an optimal vector of G. We claim that all edges in G must contain
vertex 1. Otherwise, 234 is an edge of G and G contains the clique [4](3) since G is left-compressed.
So

λ(G) ≤ x1 ·
1

2
(x2 + x3 + · · ·+ xk)

2 =
1

2
x1(1− x1)

2 ≤
1

2
×

4

27
(x1 +

1− x1

2
+

1− x1

2
)3 =

2

27
.
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Let y = (y1, y2, . . . , yt) given by yi =
1
t
for each i, 1 ≤ i ≤ t. Then 2

27 ≥ λ(G) ≥ λ(G,y) = m
t3
.

Therefore, m ≤ 2
27 t

3. ⊓⊔
In [1], Buló and Pelillo proved the following theorem.

Theorem 6 ([1]) An r-graph G = (V,E) with m edges and t vertices, which contains no p-clique
with p ≥ r, then

m ≤

(

t

r

)

−
t

(r − 1)r
[(

t

p− 1
)r−1 − 1].

Remark 4 (1) We note that Theorem 5 and Corollary 2 establish a connection between Lagrangian
and clique number for 3-graphs. They also provide evidence for Conjecture 3.

(2) For the case r = 3 and p = ⌊ t−2
2 ⌋, the upper bound in Theorem 6 is bigger than (t4−11t3+39t2−72t+48)t

6(t−4)2 .

Since
(t4 − 11t3 + 39t2 − 72t+ 48)t

6(t− 4)2
>

(t− 3)2t3

6(t− 2)(t− 1)

when t ≥ 38, the result in Corollary 2 is better than the result in Theorem 6 under the left-
compressed condition.

(3) Again, for the case r = 3 and p = 4, the upper bound in Theorem 6 is bigger than the bound
in Propostion 1 under the left-compressed condition.

Next we give the following partial result to Conjecture 1.

Theorem 7 Let m, t, and a be positive integers satisfying m =
(

t−1
3

)

+
(

t−2
2

)

+ a where 1 ≤ a ≤
t − 2. Let G = (V,E) be a left-compressed 3-graph on the vertex set [t] with m edges satisfying
|E(t−1)t| ≤

2t+3a−4
5 . If G contains a clique of order t− 1, then λ(G) ≤ λ(C3,m).

Proof Let G be a 3-graph with m edges and containing a clique of order t − 1. Assume x :=
(x1, x2, . . . , xt) is an optimal weighting for G satisfying x1 ≥ x2 ≥ . . . ≥ xt ≥ 0. We will prove that
λ(C3,m,x)− λ(G,x) ≥ 0. Therefore λ(C3,m) ≥ λ(C3,m,x) ≥ λ(G,x) = λ(G).

By Remark 2(b) and noting that G contains [t− 1](3), we have

x1 = xt−3 +
λ(E1\(t−3),x)

λ(E1(t−3),x)
= xt−3 +

λ(Ec
t−3,x)

λ(E1(t−3),x)
= xt−3 +

xtλ(E
c
(t−3)t,x)

λ(E1(t−3),x)
, (5)

and

xt−2 = xt−1 +
λ(E(t−2)\(t−1),x)

λ(E(t−2)(t−1),x)
= xt−1 +

xtλ(E(t−2)t

⋂

Ec
(t−1)t,x)

λ(E(t−2)(t−1),x)
. (6)

Let b := |E(t−1)t|. Since G contains the clique [t−1](3), we have |[t−2](2)\Et| = b−a. Note that

|Ec
(t−3)t| ≤ |Ec

(t−2)t| sinceG is left-compressed, we have |Ec
(t−3)t| ≤

b−a
2 +1(Note that t−1 ∈ Ec

(t−3)t).

On the other hand, |E(t−2)t| = t− 2− |Ec
(t−2)t| ≥ t− 2− (b− a)− 1(Note that t− 1 ∈ Ec

(t−2)t) and

|E(t−2)t

⋂

Ec
(t−1)t| ≥ (t− 2)− (b− a)− 1− b = t− 2b+ a− 1. Recalling that |E(t−1)t| ≤

2t+3a−4
5 , we

have |Ec
(t−3)t| ≤ |E(t−2)t

⋂

Ec
(t−1)t|. Let i be the minimum integer in Ec

(t−3)t and j be the minimum

integer in E(t−2)t

⋂

Ec
(t−1)t. Because G is left-compressed, we have i ≥ j. Hence

λ(Ec
(t−3)t,x) ≤ λ(E(t−2)t

⋂

Ec
(t−1)t,x). (7)
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Since x1 ≥ x2 ≥ . . . ≥ xt. Next we prove that

λ(E1(t−3),x)− λ(E(t−2)(t−1),x) = xt−2 + xt−1 + xt − x1 − xt−3 ≥ 0. (8)

To verify (8), by Remark 2(b), we have

x1 = xt−1 +
λ(E1\(t−1),x)

λ(E1(t−1),x)
≤ xt−1 +

(x2 + · · ·+ xt−2)xt

x2 + · · ·+ xt−2 + xt

≤ xt−1 + xt; (9)

x1 = xt−2 +
λ(E1\(t−2),x)

λ(E1(t−2),x)

= xt−2 +
λ(Ec

(t−2)t,x)

1− x1 − xt−2
xt

≤ xt−2 +
λ(Ec

(t−2)t,x)

1− xt−3 − xt−1 − xt

xt; (10)

and

xt−3 = xt−1 +
λ(E(t−3)\(t−1),x)

λ(E(t−3)(t−1),x)

= xt−1 +
λ(E(t−3)t

⋂

Ec
(t−1)t,x)

1− xt−3 − xt−1 − xt

xt. (11)

Adding (10) and (11), we obtain that

x1 + xt−3 ≤ xt−2 + xt−1 +
λ(Ec

(t−2)t,x) + λ(E(t−3)t

⋂

Ec
(t−1)t,x)

1− xt−3 − xt−1 − xt

xt.

Clearly t− 3 /∈ E(t−3)t. Since G is left-compressed and G 6= C3,m, we have t− 2 /∈ E(t−3)t. On the
other hand both t − 3 and t − 2 are in Ec

(t−1)t. Hence |Ec
(t−2)t| + |E(t−3)t

⋂

Ec
(t−1)t| ≤ |Ec

(t−2)t| +

|Ec
(t−1)t|−2. Recalling that |Ec| ≤ t−3, we have |Ec

(t−2)t|+ |Ec
(t−1)t| ≤ |Ec| ≤ t−2(Note that t−1 ∈

Ec
(t−2)t and t−2 ∈ Ec

(t−1)t ) and |Ec
(t−2)t|+|E(t−3)t

⋂

Ec
(t−1)t| ≤ t−4. Clearly b ≥ 2. Hence 2 is not in

Ec
(t−1)t and Ec

(t−2)t. Recalling that x1 ≥ x2 ≥ . . . ≥ xt, we have
λ(Ec

(t−2)t,x)+λ(E(t−3)t

⋂
Ec

(t−1)t,x)

1−xt−3−xt−1−xt

≤ 1.

So, (8) is true. This implies that λ(E(t−2)(t−1),x) ≤ λ(E1(t−3),x). Combining (5),6) and (7), we
obtain that x1 − xt−3 ≤ xt−2 − xt−1 and xt−3xt−2xt − x1xt−1xt ≥ 0. Hence

λ(C3,m,x)− λ(G,x) = λ([t− 2](2)\Et,x)− |[t− 2](2)\Et|x1xt−1xt

≥ |[t− 2](2)\Et|(xt−3xt−2xt − x1xt−1xt)

≥ 0. (12)

This completes the proof. ⊓⊔
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