Skip to main content
Log in

A modified homogeneous potential reduction algorithm for solving the monotone semidefinite linear complementarity problem

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this paper, we study the performance of the Semidefinite Linear Complementarity Problem (SDLCP) for symmetric matrices that is equipped with a continuously differentiable potential function. A practical homogeneous self-dual potential reduction algorithm based on this potential function is prescribed, and we establish a computational basis for interior point methods with the use of HKM directions towards the central trajectory for the monotone SDLCP. Our computational implementation maintains a global linear polynomial time convergence, while achieving strong practical performance in comparison with existing solution methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kocvara: Sparse SDP’s from structural optimization. http://plato.asu.edu/ftp/kocvara/

  2. SDP: More SDP problems. http://plato.asu.edu/ftp/sdp/

  3. Andersen, E.D., Ye, Y.: A computational study of the homogeneous algorithm for large scale convex optimization. Comput. Optim. Appl. 10, 243–269 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Andersen, E.D., Ye, Y.: On a homogeneous algorithm for the monotone complementarity problem. Math. Progr. 84, 375–399 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borchers, B.: SDPLIB 1.2, a library of semidefinite programming test problems. Optim. Methods Softw. 11 & 12, 683–690 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brixius, N., Potra, F.A., Sheng, R.: Sdpha: a matlab implementation of homogeneous interior-point algorithms for semidefinite programming. Optim. Methods Softw. 11(1–4), 583–596 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, F., Zuo, Z.: Polynomial convergence of predictor-corrector for SDLCP based on the M-Z family of directions. Int. Math. Forum. 6, 1127–1134 (2011)

    MathSciNet  MATH  Google Scholar 

  8. Freund, R.M.: Polynomial-time algorithms for linear programming based only on primal scaling and projected gradients of a potential function. Math. Program. 51, 203–222 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Goldfarb, D., Mehrotra, S.: A relaxed variant of Karmarkar’s algorithm. Math. Program. 40, 285–315 (1988)

    MATH  Google Scholar 

  10. Grant, M., Boyd, S.: CVX: matlab software for disciplined convex programming, version 2.0 beta. http://cvxr.com/cvx (2013)

  11. Grant, M., Boyd, S.: Graph implementations for nonsmooth convex programs, recent advances in learning and control (a tribute to M. Vidyasagar). In: Blondel, V., Boyd, S., Kimura, H., (eds.) Lecture notes in control and information sciences, pp. 95–110 (2008)

  12. Helmberg, C., Rendl, F., Vanderbei, R.J., Wolkowicz, H.: An interior-point method for semidefinite programming. SIAM J. Optim. 6, 342–361 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kojima, M., Mizuno, S., Yoshise, A.: An \(O(\sqrt{n}L)\) iteration potential reduction algorithm for linear complementary problems. Math. Program. 50, 331–342 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kojima, M., Shindoh, S., Hara, S.: Interior-point methods for the monotone semidefinite linear complementarity problem in symmetric matrices. SIAM J. Optim. 7, 86–125 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kojima, M., Shida, M., Shindoh, S.: Search directions in the SDP and the monotone SDLCP: generalization and inexact computation. Math. Program. 85, 51–80 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Karmarkar, N.: A new polynomial-time algorithm for linear programming. Combinatorica 4, 373–395 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mizuno, S., Kojima, M., Todd, M.: Infeasible interior point primal dual potential reduction algorithms for linear programming. SIAM J. Optim. 5(1), 52–67 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Monteiro, R.D.C., Tsuchiya, T.: Polynomiality of primal dual algorithms for semidefinite linear complementarity problems based on the Kojima-Shindoh-Hara family of directions. Math. Program. 84, 39–53 (1999)

    MathSciNet  MATH  Google Scholar 

  19. Monteiro, R.D.C.: Primal-dual path-following algorithms for semidefinite programming. SIAM J. Optim. 7, 663–678 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mehorotra, S., Huang, K.L.: Computational experience with a modified potential reduction algorithm for linear programming. Optim. Methods Softw. 27, 865–891 (2012)

    Article  MathSciNet  Google Scholar 

  21. Nie, J., Yuan, Y.: A potential reduction algorithm for an extended SDP problem. Sci. China Ser. A Math. 43, 35–46 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Potra, F.A., Sheng, R.: On homogeneous interior point algorithms for semidefinite programming. Optim. Methods Softw. 9(1–3), 161–184 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Potra, F.A., Sheng, R.: A superlinearly convergent primal dual infeasible interior point algorithm for semidefinite programming. SIAM J. Optim. 8, 1007–1028 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Slater, M.: Lagrange multipliers revisited: a contribution to non-linear programming. Cowels commission discussion paper. Mathematics 403 (1950)

  25. Toh, K.C.: A note on the calculations of step lengths in interior point methods for semidefinite programming. Comput. Optim. Appl. 21, 301–310 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tanabe, K.: Centered Newton method for mathematical programming. Syst. Model. Optim. 113, 197–206 (1988)

    MathSciNet  MATH  Google Scholar 

  27. Todd, M., Ye, Y.: A centered projective algorithm for linear programming. Math. Oper. Res. 15, 508–529 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  28. Todd, M.J.: Potential-reduction methods in mathematical programming. Math. Program. 76, 3–45 (1996)

    MathSciNet  MATH  Google Scholar 

  29. Toh, K.C., Todd M.J., Tütüncü, R.H.: On the implementation and usage of SDPT3—a Matlab software package for semidefinite quadratic linear programming. Version 4.0 (2010)

  30. Tütüncü, R.H., Toh, K.C., Todd, M.J.: Solving semidefinite quadratic linear programs using SDPT3. Math. Program. 95, 189–217 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Vandenberghe, L., Boyd, S.: Applications of semidefinite programming. Appl. Numer. Math. 29, 283–299 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Xu, X., Hung, P., Ye, Y.: A simplified homogeneous and self dual linear programming algorithm and its implementation. Ann. Oper. Res. 62, 151–171 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ye, Y.: A class of potential functions for linear programming. Technical report, department of management sciences, The University of Iowa (1988)

  34. Ye, Y., Todd. M.J., Mizuno, S.: An \(O(\sqrt{n}L)-\) iteration homogenous and self dual linear programming algorithm. Technical report. 1007 (1992)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitamitra Desai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayak, R.K., Desai, J. A modified homogeneous potential reduction algorithm for solving the monotone semidefinite linear complementarity problem. Optim Lett 10, 1417–1448 (2016). https://doi.org/10.1007/s11590-015-0940-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-015-0940-1

Keywords

Navigation