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Abstract Positive bases, which play a key role in understanding devi free op-
timization methods that use a direct search framework, asitipe spanning sets
that are positively linearly independent. The cardinality positive basis ifR" has
been established to be betweer 1 and2n (with both extremes existing). The lower
bound is immediate from being a positive spanning set, vthgeupper bound uses
both positive spanning and positively linearly independenthiis note, we provide
details proving that a positively linearly independentindR" for n € {1, 2} has at
most2n elements, but a positively linearly independent séRfhfor n > 3 can have
an arbitrary number of elements.
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1 Introduction

Firstintroduced in 1954 [Dav54], the notion of a positivesisaglays a key role in un-
derstanding derivative free optimization methods thataud&ect search framework
(a.k.a. pattern search methods) [[196.CP02,KLT03, ReghSpose terms, a pos-
itive basis is a set that provides some directional infoiomeinto every half-space,
without including unnecessary vectors.

Pattern search methods seek a minimizef by evaluatingf over an ever shrink-
ing ‘pattern’:

Given f and a incumbent solutiaz.
— Evaluatef (z* + av') for eachv’ € V = {v! 0%, ..., v™}.
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— If a lower function value is found, then updaté.
— If no lower function value is found, then shriak

If f €Ct, Vf(z¥) # 0, and the pattern forms a positive basis, then at least ontervec
in the pattern is a descent direction fbatz*. Thus, under these conditions, once
is sufficiently small, descent must occur. Formalizatiothis idea has been used to
prove convergence in a number of direct search/patterclseaethods [LT96, CP02,
[KLT03l/AD04] (and many others).

Mathematically, to define positive basis we begin with thsifdee span: given a
set of vector®’ = {v!,v?,...,v™} C IR", we define the positive span bfby

p-spantV) = {Zaivi ca; >0foralli =1,2, ...,m} )
=1

We now definé’ to be a positive basis if it satisfies two properties

i) [Positive Spanning] p-spdw) = IR", and
i) [Positive Linear Independence] ¢ p-spartV\{v‘}) foralli = 1,2, ...,m.

Unlike bases ofR™ (which always have exactly elements), a positive basis BX"
has betweem + 1 and2n elements. The lower bound af + 1 comes from the
following fact.

Proposition 1 [Davs4, Thm 3.7] If V = {v!,v2,...,v™} is a positive spanning set
of R", then V© = {v!,v?,...,v™~ !} isa spanning set of IR"™.

Thus, to satisfy positive spanning condition, a set mustaiorat least: + 1
vectors.

The upper bound on the cardinality of a positive basis is raob¢le to obtain. The
original work of Davis includes a proof of this fatt[Dav54m 6.7], but the deriva-
tion is rather technical. Alternate proofs appear in theks@f Shephard [Shel71] and
Audet [Aud1l].

Itis important to note that all three proofs usgth positive spanning and positive
linear independence to provide the upper bound. As suchpritygerty of positive
linear independence is less clear in its implications odlicatity. For example, any
set consisting of exactly one vector is always positivedihegindependent — includ-
ing the set” = {0}. (Of course, any positive linearly independent set \ithr more
vectors cannot contain thevector.) Based on a knowledge of positive bases, one
might conjecture that positively linearly independensdeve at mostn elements.
This is true inR' andIR?, but false beyond that. In this note, we provide details
proving that a positively linearly independent sef¥ for » € {1,2} has at most
2n elements, but a positively linearly independent seRif for n > 3 can exceed
this bound. Proofs of the first two statements appear in @&&i In Sectiof 3 we
provide two examples. The first is a straightforward exanople positively linearly

independent set with
n
V| =
V= ()

This example requires no tools other than basic linear adgdihe second example
develops a positively linearly independent sefli with an arbitrary number of
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elements. This example requires a small knowledge of coameysis, but is still
quite accessible to a general audience.

We conclude the introduction with a lemma that allows us topdify notation in
all future proofs and examples.

Lemmal Let YV = {v',2?%,..., o™} C R" with v’ # 0 for all i. Then V is pos-

itively linearly independent if and only if V = {Hg—” T Hg—:[”} is positively
linearly independent.

Proof. Note that

k i
vk:Zaivz = vk :Zﬁi vi )
oA~ 2 Tl

ik
wherea; > 0 andg; = O‘il‘l‘g—’il\l\ > 0 for anyi # k. Thus,V is positively linearly
independent if and only P is positively linearly independent. O

2 DimensionsIR' and IR?

Proposition 2 The maximal cardinality of a positively linearly independent set in
R'is2.

Proof. Suppose = {v!,v%,v*}. If 0 € V, thenV is not positively linearly inde-
pendent. If0 ¢ V, then, by Lemmall, without loss of generality € {—1,1} for
eachi. By the pigeon hole principle, at least two vectoend; are the same, and
is not positively linearly independent. Thus)fis positively linearly independent,
then|V| < 2. O

Proposition 3 The maximal cardinality of positively linearly independent setsin IR?
is4.

Proof. For eventual contradiction, suppoge= {v!,v2,...,v°} C IR? is positively
linearly independent. Without loss of generality, ass_tln\mfdj =1fori=1,2,..,5.
Clearly,v! # v for anyi # 1. Moreover, ifv! = —v? for somei, thenv* # —o!

for anyk # i. As such, there are at least two vectors, sAgndv?, that are linearly
independent. Examining; \ {v!,v?}, and repeating the same arguments, we may
assume that® andv* are also linearly independent. Therefdre!, v?} and{v?, v*}
are both bases dR?.

As {v',v?} is a basis ofR?, there existsy € IR? such that® = ajv! + av?.
If «; > 0andas > 0, then we have contradicted the positive linear indeperglefic
V. If oy > 0andas < 0, thenajv! = v3 — ayv?, which also contradicts positive
linear independence. Similarly, > 0 anda; < 0 fails. Hencep < 0.

Using the same arguments, afi?, v*} is a basis oIR?, there existg? < 0 and
v < 0 such that* = B0 + pv? andv® = y,v3 + 0. Substitution now yields

v® = (a1 + 12B1)v" + (V102 + 7282)0°
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which shows that® € p-spari)\{v°}), soV is not positively linearly independent.
(I
On a final note for this section, it is clear that the maximumdielities derived
above can be achieved, as constructing an exampleWiite 2n is trivial.

3 DimensionIR™ for n > 3

Our first example provides a family of positively linear ipég&dent sets whose car-
dinality grows exponentially with dimension.

Example1l In IR", letV be the set of vectors of all the nontrivial permutations with
5] I'sandn — | 5] = [5]0's,

V{UE{O,I}" : ivi: {gJ},

=1

then|V| = (LZJ)' andV is positively linearly independent.

Proof. Supposev® € V and there exist nonnegative numberssuch that* =
Diz v’ As v # 0, there must exist somgwith o; > 0. Sincev* # v/, and

v¥ v € V, there must exist some indéwith v} = 0 andv] = 1. This yields the
contridiction
0= :Zaivf > ajv] =a; > 0.
i#k
Hence)V is positively linearly independent. The proof of the cagdity is trivial. [

Our second example requires some basic tools and definftimmsconvex anal-
ysis.
Definition 1 A setC C TR" is convex, if given any,y € C and anyd € [0, 1], the
pointz =0z + (1 —0)y € C.
AsetC C IR"is strictly convex, if given any, y € C with z # yandany € (0, 1),
the pointz = 0z + (1 — 0)y € int(C).

Definition 2 The convex hull of a set, denotedtonv(S), is the smallest convex set
that containss.

Example2 The setB; = {x € IR" : ||z| < 1} is strictly convex.

Example 3 [RWQ09, Thm 2.27] Let” = {y',2,...,y™} C C. Then

conv(Y) = {:17 = iaiyi say >0, iai = 1} .
i=1 i=1

Combining definitiol 1l and examglé 3, we have the followirassic lemma.
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Lemma 2 Suppose C is gtrictly convex. Let Y = {y',¢2,..y™} C Candz €
conv(Y). Then

gither z = ¢’ for somei or z € int(C).
We now prove the main result.

Theorem 1 For n > 3 a positively linearly independent set in IR™ may contain an
arbitrary number of vectors.

Proof. We shall provide an example IR®. Extending tdR" can be trivially accom-
plished by addin@ elements in the extra dimensions.
LetS = {(z,y) : 22 + y? = 1}. Select any distinct: points inS,

{(xl’yl)’ ($2’y2)’ ctt (mm,ym)} C S7

and define

V = {’[}1,’1)2, D 7Um} = {(:I:l?yl? ]‘)’ (:I:2’y27 ]‘)’ R (:I:m7ym7 1)}'

We claim thatV is positively linear independent.
Suppose there existé ¢ p-spartV’\{v*}). By reordering, without loss of gen-
erality, assumeé = m, so

m—1
" = Z av',  with a; > 0.
i=1

Noting thatv} = 1 for all 4, we must have

m—1 m—1
1l=vy"= Zawéz Zal
i=1 i=1
This implies
m—1 m—1

($m5ym) = Z ai($i7yi)7 Z Q= 17 (673 Z 0.

i=1 i=1

Le., (@™,y™) € conv({(z',y"), (2% ¢%),..., (@™ L,y 1)}). As (a™,y™) #
(2%, y%) for anyi < m, Fac2 impliefz™,y™) € int(B;), contradictingz?, y*) €
By \ int(By) for all i. O

It is interesting to note that the example in the proof of Theead does not
actually requiren to be finite. Indeed, ifR® it is possible to create an uncountable set
of vectorsy suchthav ¢ p-spaifV\{v}) forall v € V. Moreover, while the example
uses the unit sphere to create the set, it is clearthat{(z, y) : % +y? = 1} could
be replaced by the boundary of any compact strictly convex se

Finally, we note that an alternate (but similar) proof of ®ren1 was indepen-
dently developed by Regis and presented in [Reg15, Thm 3.4].
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