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Abstract Positive bases, which play a key role in understanding derivative free op-
timization methods that use a direct search framework, are positive spanning sets
that are positively linearly independent. The cardinalityof a positive basis inIRn has
been established to be betweenn+1 and2n (with both extremes existing). The lower
bound is immediate from being a positive spanning set, whilethe upper bound uses
both positive spanning and positively linearly independent. Inthis note, we provide
details proving that a positively linearly independent setin IRn for n ∈ {1, 2} has at
most2n elements, but a positively linearly independent set inIRn for n ≥ 3 can have
an arbitrary number of elements.

Keywords: Positive Linear Independence, Positive Basis, Convex Analysis

1 Introduction

First introduced in 1954 [Dav54], the notion of a positive basis plays a key role in un-
derstanding derivative free optimization methods that usea direct search framework
(a.k.a. pattern search methods) [LT96,CP02,KLT03,Reg15]. In loose terms, a pos-
itive basis is a set that provides some directional information into every half-space,
without including unnecessary vectors.

Pattern search methods seek a minimizer off by evaluatingf over an ever shrink-
ing ‘pattern’:

Givenf and a incumbent solutionxk.
– Evaluatef(xk + αvi) for eachvi ∈ V = {v1, v2, ..., vm}.
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– If a lower function value is found, then updatexk.
– If no lower function value is found, then shrinkα.

If f ∈ C1,∇f(xk) 6= 0, and the pattern forms a positive basis, then at least one vector
in the pattern is a descent direction forf atxk. Thus, under these conditions, onceα
is sufficiently small, descent must occur. Formalization ofthis idea has been used to
prove convergence in a number of direct search/pattern search methods [LT96,CP02,
KLT03,AD04] (and many others).

Mathematically, to define positive basis we begin with the positive span: given a
set of vectorsV = {v1, v2, ..., vm} ⊆ IRn, we define the positive span ofV by

p-span(V) =

{
m∑

i=1

αiv
i : αi ≥ 0 for all i = 1, 2, ...,m

}
.

We now defineV to be a positive basis if it satisfies two properties

i) [Positive Spanning] p-span(V) = IRn, and
ii) [Positive Linear Independence]vi /∈ p-span(V\{vi}) for all i = 1, 2, ...,m.

Unlike bases ofIRn (which always have exactlyn elements), a positive basis ofIRn

has betweenn + 1 and2n elements. The lower bound ofn + 1 comes from the
following fact.

Proposition 1 [Dav54, Thm 3.7] If V = {v1, v2, ..., vm} is a positive spanning set
of IRn, then V⊖ = {v1, v2, ..., vm−1} is a spanning set of IRn.

Thus, to satisfy positive spanning condition, a set must contain at leastn + 1
vectors.

The upper bound on the cardinality of a positive basis is moresubtle to obtain. The
original work of Davis includes a proof of this fact [Dav54, Thm 6.7], but the deriva-
tion is rather technical. Alternate proofs appear in the works of Shephard [She71] and
Audet [Aud11].

It is important to note that all three proofs useboth positive spanning and positive
linear independence to provide the upper bound. As such, theproperty of positive
linear independence is less clear in its implications on cardinality. For example, any
set consisting of exactly one vector is always positive linearly independent – includ-
ing the setV = {0}. (Of course, any positive linearly independent set with2 or more
vectors cannot contain the0 vector.) Based on a knowledge of positive bases, one
might conjecture that positively linearly independent sets have at most2n elements.
This is true inIR1 and IR2, but false beyond that. In this note, we provide details
proving that a positively linearly independent set inIRn for n ∈ {1, 2} has at most
2n elements, but a positively linearly independent set inIRn for n ≥ 3 can exceed
this bound. Proofs of the first two statements appear in Section 2. In Section 3 we
provide two examples. The first is a straightforward exampleof a positively linearly
independent setV with

|V| =

(
n

⌊n
2
⌋

)

This example requires no tools other than basic linear algebra. The second example
develops a positively linearly independent set inIRn with an arbitrary number of
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elements. This example requires a small knowledge of convexanalysis, but is still
quite accessible to a general audience.

We conclude the introduction with a lemma that allows us to simplify notation in
all future proofs and examples.

Lemma 1 Let V = {v1, v2, . . . , vm} ⊆ IRn with vi 6= 0 for all i. Then V is pos-
itively linearly independent if and only if V̂ = { v1

‖v1‖ ,
v2

‖v2‖ , . . . ,
vm

‖vm‖} is positively
linearly independent.

Proof. Note that

vk =
∑

i6=k

αiv
i ⇐⇒

vk

‖vk‖
=

∑

i6=k

βi

vi

‖vi‖
,

whereαi ≥ 0 andβi = αi
‖vi‖
‖vk‖

≥ 0 for any i 6= k. Thus,V is positively linearly

independent if and only if̂V is positively linearly independent.

2 DimensionsIR1 and IR
2

Proposition 2 The maximal cardinality of a positively linearly independent set in
IR1 is 2.

Proof. SupposeV = {v1, v2, v3}. If 0 ∈ V , thenV is not positively linearly inde-
pendent. If0 /∈ V , then, by Lemma 1, without loss of generalityvi ∈ {−1, 1} for
eachi. By the pigeon hole principle, at least two vectorsi andj are the same, andV
is not positively linearly independent. Thus, ifV is positively linearly independent,
then|V| ≤ 2.

Proposition 3 The maximal cardinality of positively linearly independent sets in IR2

is 4.

Proof. For eventual contradiction, supposeV = {v1, v2, . . . , v5} ⊆ IR2 is positively
linearly independent. Without loss of generality, assume‖vi‖ = 1 for i = 1, 2, ..., 5.
Clearly,v1 6= vi for any i 6= 1. Moreover, ifv1 = −vi for somei, thenvk 6= −v1

for anyk 6= i. As such, there are at least two vectors, sayv1 andv2, that are linearly
independent. Examining,V \ {v1, v2}, and repeating the same arguments, we may
assume thatv3 andv4 are also linearly independent. Therefore,{v1, v2} and{v3, v4}
are both bases ofIR2.

As {v1, v2} is a basis ofIR2, there existsα ∈ IR2 such thatv3 = α1v
1 + α2v

2.
If α1 ≥ 0 andα2 ≥ 0, then we have contradicted the positive linear independence of
V . If α1 > 0 andα2 ≤ 0, thenα1v

1 = v3 − α2v
2, which also contradicts positive

linear independence. Similarly,α2 > 0 andα1 ≤ 0 fails. Hence,α ≤ 0.
Using the same arguments, and{v3, v4} is a basis ofIR2, there existsβ ≤ 0 and

γ ≤ 0 such thatv4 = β1v
1 + βv2 andv5 = γ1v

3 + γ2v
4. Substitution now yields

v5 = (γ1α1 + γ2β1)v
1 + (γ1α2 + γ2β2)v

2
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which shows thatv5 ∈ p-span(V\{v5}), soV is not positively linearly independent.

On a final note for this section, it is clear that the maximum cardinalities derived
above can be achieved, as constructing an example with|V| = 2n is trivial.

3 DimensionIRn for n ≥ 3

Our first example provides a family of positively linear independent sets whose car-
dinality grows exponentially with dimension.

Example 1 In IRn, let V be the set of vectors of all the nontrivial permutations with
⌊n
2
⌋ 1’s andn− ⌊n

2
⌋ = ⌈n

2
⌉ 0’s,

V =

{
v ∈ {0, 1}n :

n∑

i=1

vi =
⌊n
2

⌋}
,

then|V| =
(

n

⌊n

2
⌋

)
, andV is positively linearly independent.

Proof. Supposevk ∈ V and there exist nonnegative numbersαi such thatvk =∑
i6=k αiv

i. As vk 6= 0, there must exist somej with αj > 0. Sincevk 6= vj , and

vk, vj ∈ V , there must exist some indexl with vkl = 0 andvjl = 1. This yields the
contridiction

0 = vkl =
∑

i6=k

αiv
i
l ≥ αjv

j
l = αj > 0.

Hence,V is positively linearly independent. The proof of the cardinality is trivial.
Our second example requires some basic tools and definitionsfrom convex anal-

ysis.

Definition 1 A setC ⊆ IRn is convex, if given anyx, y ∈ C and anyθ ∈ [0, 1], the
pointz = θx + (1− θ)y ∈ C.
A setC ⊆ IRn is strictly convex, if given anyx, y ∈ C with x 6= y and anyθ ∈ (0, 1),
the pointz = θx+ (1− θ)y ∈ int(C).

Definition 2 The convex hull of a setS, denotedconv(S), is the smallest convex set
that containsS.

Example 2 The setB1 = {x ∈ IRn : ‖x‖ ≤ 1} is strictly convex.

Example 3 [RW09, Thm 2.27] LetY = {y1, y2, ..., ym} ⊆ C. Then

conv(Y ) =

{
x =

m∑

i=1

αiy
i : αi ≥ 0,

m∑

i=1

αi = 1

}
.

Combining definition 1 and example 3, we have the following classic lemma.
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Lemma 2 Suppose C is strictly convex. Let Y = {y1, y2, ...ym} ⊆ C and x̄ ∈
conv(Y ). Then

either x = yi for some i or x ∈ int(C).

We now prove the main result.

Theorem 1 For n ≥ 3 a positively linearly independent set in IRn may contain an
arbitrary number of vectors.

Proof. We shall provide an example inIR3. Extending toIRn can be trivially accom-
plished by adding0 elements in the extra dimensions.

LetS = {(x, y) : x2 + y2 = 1}. Select any distinctm points inS,

{(x1, y1), (x2, y2), . . . , (xm, ym)} ⊂ S,

and define

V = {v1, v2, . . . , vm} = {(x1, y1, 1), (x2, y2, 1), . . . , (xm, ym, 1)}.

We claim thatV is positively linear independent.
Suppose there existsvk ∈ p-span(V \{vk}). By reordering, without loss of gen-

erality, assumek = m, so

vm =

m−1∑

i=1

αiv
i, with αi ≥ 0.

Noting thatvi
3
= 1 for all i, we must have

1 = vm3 =

m−1∑

i=1

αiv
i
3 =

m−1∑

i=1

αi.

This implies

(xm, ym) =
m−1∑

i=1

αi(x
i, yi),

m−1∑

i=1

αi = 1, αi ≥ 0.

I.e., (xm, ym) ∈ conv({(x1, y1), (x2, y2), . . . , (xm−1, ym−1)}). As (xm, ym) 6=
(xi, yi) for anyi < m, Fact 2 implies(xm, ym) ∈ int(B1), contradicting(xi, yi) ∈
B1 \ int(B1) for all i.

It is interesting to note that the example in the proof of Theorem 1 does not
actually requirem to be finite. Indeed, inIR3 it is possible to create an uncountable set
of vectorsV such thatv /∈ p-span(V\{v}) for all v ∈ V . Moreover, while the example
uses the unit sphere to create the set, it is clear thatS = {(x, y) : x2+ y2 = 1} could
be replaced by the boundary of any compact strictly convex set.

Finally, we note that an alternate (but similar) proof of Theorem 1 was indepen-
dently developed by Regis and presented in [Reg15, Thm 3.4].
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