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Abstract

To minimize bunker fuel consumption, ship captains choose suitable speed and head-

ing to take advantage of ocean currents, wind, and wave when routing a ship between

two ports. Conventional approaches discretize the space and time and then apply

dynamic programming to find the optimal speed and heading of a ship at each time.

Nevertheless, the resulting solution to the discretized problem may not converge

to the optimal solution to the original continuous problem, even when the sizes of

the discretization grids approach 0. To overcome this deficiency, we propose an im-

proved dynamic programming approach. The novelty of the improved method lies

in that we repeatedly re-discretize the space in both controlled and random manners

to obtain better solutions. The improved dynamic programming approach provides

significantly better solutions than the conventional approaches.
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1. Introduction

Shipping is vital to international trade (Zhen and Wang, 2015). Bunker fuel

costs may represent more than 75 per cent of the operating costs of ships due to

the high bunker prices (Ronen, 2011). To reduce fuel consumptions, shipping lines

take measures at three planning levels (Bell et al., 2011, 2013; Fagerholt et al., 2013;

Halvorsen-Weare and Fagerholt, 2013). At the strategic level, they order mega-ships

that are more fuel-efficient. At the tactical level, the ships are steamed at speeds

lower than the design speeds as the daily fuel consumption of a ship is roughly

proportional to the speed cubed (Fagerholt et al., 2010; Norstad et al., 2011; Wang

et al., 2013). At the operational level, ship captains choose suitable speed and

heading to take advantage of ocean currents, wind, and wave when routing a ship

between two ports.

The operational-level ship routing problem can be described as follows. Let

φ1, λ1, and φ2, λ2 be the geographical latitude and longitude of the origin port

and the destination port, respectively. A ship leaves the origin port at time 0 and

must arrive at the destination port at time T . Represent by x(t) and y(t) the

latitude and longitude of the ship at time t, respectively, 0 ≤ t ≤ T . The two

functions x(t) and y(t) could uniquely determine the speed and heading of the ship

at each time. Assuming that x(t) and y(t) are differentiable, we can denote by

f(x(t), y(t), dx(t)
dt
, dy(t)

dt
, t) the fuel consumption rate (ton/hour) of the ship at time t.

The functional form of f depends on the characteristics of the ship and its cargo

load; the current, wind, and wave at the location (x(t), y(t)) at time t; and the sailing

speed and heading of the ship. The model that minimizes the fuel consumption is:

min

∫ T

t=0

f

(
x(t), y(t),

dx(t)

dt
,
dy(t)

dt
, t

)
dt (1)
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subject to:

x(0) = φ1,

y(0) = λ1,

x(T ) = φ2,

y(T ) = λ2.

Of course, there should also be constraints regarding the speed, acceleration, and

possible navigational regions. The functional form of f can be very complex and

there is no reason to assume nice properties of f such as convexity.

2. A discretized dynamic programming approach and its deficiency

To address the fuel consumption problem (1), Lo et al. (1991) and Lo and

McCord (1995) proposed a discretization-based dynamic programming approach.

In particular, Lo and McCord (1995) discretized the latitude, longitude, and time.

They considered the longitude as the stage variable, the combination of latitude

and time as the state variable, and then applied dynamic programming to find the

shortest path from the origin node (φ1, λ1, 0) to the destination node (φ2, λ2, T ).

The rationale behind discretization is the implicit assumption that when the

discretization grids are fine enough, i.e., when the sizes of all grids approach 0, the

optimal solution to the discretized problem converges to the optimal solution of the

original continuous problem (1). However, we find that this is not the case for the

ship routing problem.

Example 1: Suppose that the fuel consumption rate is proportional to the speed

cubed and is independent of the location, time, and heading. Then, the optimal
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Figure 1: The shortest paths with different numbers of discretization points

sailing speed should be constant over the voyage (Hvattum et al., 2013) and the ship

routing problem thus becomes one that finds the shortest path from the origin port

to the destination port. Suppose further that the distance between the two ports is

small (e.g., in coastal shipping), and hence the surface of the earth can be considered

as a plane (Fagerholt et al., 2000). Now consider the 1 × 2 rectangle in Figure 1

where the bottom-left and upper-right corners are the origin and destination ports,

respectively. The shortest distance is
√

12 + 22 ≈ 2.2361. We can discretize the

latitude into two segments of equal length, and the longitude into three segments of

equal length, as shown in Figure 1a. The shortest path is represented by the arrows,

and its length is
√

12 + (4
3
)2 + 2

3
≈ 2.3333. If we divide the rectangle into 4 × 6

smaller ones, as shown in Figure 1b, the shortest path is still 2.3333. In fact, if the

rectangle is divided into 2n × 3n smaller ones of the same size, then the shortest

path is always 2.3333 even when n approaches infinity.

Example 2: Suppose that the fuel consumption rate is proportional to the speed

cubed and there is no obstacle between the origin and destination ports. Hence,

the optimal route is the shortest path, which is the great circle distance. The great

circle distance d = r∆σ, where r = 6371 km is the radius of the earth, and ∆σ is
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the central angle between the two ports, which can be calculated by the Haversine

formula (Haversine, 2014):

∆σ = 2 arcsin

[√
sin2

(
φ1 − φ2

2

)
+ cosφ1 cosφ2 sin2

(
λ1 − λ2

2

)]
. (2)

Suppose φ1 = 0, λ1 = 0, and φ2 = π
6
, λ2 = π

4
. Eq. (2) calculates that the short-

est distance is 0.911738291r. We uniformly discretize the latitude and longitude

into the same number of segments, and then use dynamic programming to find

the shortest path. The results are shown in Table 1. We can see that there is a

0.914869682−0.911738291
0.911738291

≈ 0.34% gap even for very fine grids.

Table 1: The shortest distances with different numbers of discretization points

Discretization Shortest distance

2× 2 0.913999751r

5× 5 0.914726881r

10× 10 0.914833858r

20× 20 0.914860721r

50× 50 0.914868251r

100× 100 0.914869327r

200× 200 0.914869596r

500× 500 0.914869672r

1000× 1000 0.914869682r
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3. An improved dynamic programming approach

As there is no special property of function f in Eq. (1), we could not expect to

devise an efficient method to obtain an optimal solution. Example 1 and Example

2 demonstrate that simply refining the grids in the dynamic programming approach

may not be useful. We thus propose an improved dynamic programming approach

that incorporates a different discretization method to obtain better solutions.

For preciseness, we use the shortest path problem in Example 2 to describe the

algorithm.

Improved dynamic programming approach to Example 2

Step 0. (Initialization): Define M as the number of discretization segments for the

longitude and N the one for the latitude. Consider the longitude as the

stage variable. Stage m = 1, 2, · · · ,M corresponds to longitude π
4
m−1
M

. The

maximum and minimum latitudes at stage m are lmax
m = π

6
and lmin

m =

0, respectively. The latitude of state n at stage m, i.e., node (m,n), is

l(m,n) = π
6
n−1
N

, n = 1, 2, · · · , N + 1. Define π(m) as the optimal state at

stage m. The value of π(m) is to be obtained. Define κ = 0 as the number

of iterations that have been implemented and K as the maximum number

of iterations.

Step 1. (Dynamic programming): Use the conventional dynamic programming ap-

proach to find the shortest path from node (1, 1) to the destination port.

The shortest path is recorded by the vector (π(1), π(2) · · · π(M)).

Step 2. (Re-discretize):
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Step 2.1. (Truncate the latitude interval at each stage): For each stage m, let

γm := lmax
m −lmin

m

4
, and update lmax

m ← min(lmax
m , l(m,π(m)) + γm) and

lmin
m ← max(lmin

m , l(m,π(m))− γm).

Step 2.2. (Keep the optimal path for the next iteration) For each stage m, set

l(m,N + 1) = l(m,π(m)).

Step 2.3. (Uniformly discretize the latitude): For each stage m, uniformly dis-

cretize the interval [lmin
m , lmax

m ] into N
2

segments, and record the N
2

+ 1

latitudes in l(m, 1), l(m, 2) · · · , l(m, N
2

+ 1).

Step 2.4. (Randomly discretize the latitude): Randomly choose N
2
− 1 points

from the interval [lmin
m , lmax

m ], and record them in l(m, N
2

+ 2), l(m, N
2

+

3) · · · , l(m,N).

Step 3. (Check the stopping criterion): Set κ← κ+1. If κ ≥ K, return the shortest

path and stop. Otherwise go to Step 1. �

The idea of the algorithm is as follows. When κ = 0, we have no information

on the optimal path. Therefore, we discretize the latitude uniformly (Step 0) and

use the conventional dynamic programming method to find the optimal path to

the discretized problem (Step 1). As shown in Example 1 and Example 2, the

obtained path may not be optimal for the continuous problem but should not deviate

from the optimal one too much. Therefore, we no longer consider the paths that

considerably deviate from the obtained one (Step 2.1). We keep the current solution

for the next iteration (Step 2.2) so that the solution will not deteriorate as the

algorithm progresses. We then re-discretize the reduced latitude interval for each

stage. To avoid the deficiency demonstrated by Example 1 and Example 2, half of

the discretization points are generated in a uniform manner (Step 2.3) and the other
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half in a random manner (Step 2.4). We invoke the dynamic programming approach

K times.

3.1. Numerical example

We apply the improved dynamic programming approach to Example 2, with

M = 50, N = 50, and K = 10. The results are shown in Table 2. We can see that

the gap is only 0.911738318−0.911738291
0.911738291

≈ 3× 10−6% after ten iterations.

Table 2: The shortest distance in each iteration

Iteration Shortest distance

1 0.914868251r

2 0.913632967r

3 0.912151598r

4 0.911857860r

5 0.911763365r

6 0.911746361r

7 0.911740016r

8 0.911738735r

9 0.911738389r

10 0.911738318r

3.2. Computational complexity

The improved dynamic programming approach is very efficient: its overall com-

putational complexity is KMN2. Therefore, when M = 50, N = 50, and K = 10,

the computational time is comparable to a case with M = N = 50 × 10
1
3 ≈ 108 in

Table 1 solved by the conventional dynamic programming approaches.
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3.3. Discussions

Without considering ocean currents, wind, wave, and obstacles between the ori-

gin and destination ports, the optimal routing of a ship simply involves sailing along

the great circle. The improved dynamic programming approach outperforms conven-

tional dynamic programming methods when such realistic factors are incorporated

into making the optimal routing decisions. Note that since the grids in dynamic pro-

gramming is very fine, the weather and sea conditions in one grid can be considered

as constant and hence the fuel consumption from one node to another is calculated

simply based on the speed, distance, and the weather and sea conditions.

Consider Example 2 again. We assume that the weather condition changes from

good to adverse with the increase of longitude. In particular, we assume that the

fuel consumption in the area whose longitude is between 0 and λ2/10 is 1.1 times the

distance, between λ2/10 and 2λ2/10 is 1.2 times the distance · · · between 9λ2/10 and

10λ2/10 is 2 times the distance. For this case, we do not have analytical formulae

to calculate the minimum fuel consumption. Nevertheless, we can still compare the

improved dynamic programming approach with the conventional one. We apply the

improved dynamic programming approach to minimize fuel consumption for this

example with M = 50, N = 50, and K = 10. The results are shown in Table 3. We

can see that the improved dynamic programming approach still improves over the

conventional approach.

The uncertain nature of the weather and sea conditions may also be formu-

lated. Suppose that we consider several possible future scenarios of weather and

sea conditions with known probabilities. Then, in the improved dynamic program-

ming approach we can use the expected value of the fuel consumption of the voyage

from one node to another and thus minimize the total expected fuel consumption
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Table 3: The minimum fuel consumption with the conventional and the improved dynamic pro-
gramming approach

Approach Discretization Minimum fuel consumption

Conventional 10× 10 1.399122324r

20× 20 1.399178096r

50× 50 1.399193745r

100× 100 1.399195981r

200× 200 1.399196540r

500× 500 1.399196697r

1000× 1000 1.399196719r

Improved 50× 50 1.393910091r

from the origin port to the destination port. Moreover, since the improved dynamic

programming approach is efficient, the routing decisions can be frequently updated

based on the latest forecast of weather and sea conditions.

4. Conclusions

We have pointed out that when routing ships between two ports, discretizing

the space and time may not lead to an optimal solution to the original contin-

uous problem, even when the sizes of the discretization grids approach 0. This

poses a challenge to the conventional discretization-based dynamic programming

approaches, at least theoretically. To overcome this problem, we have proposed an

improved dynamic programming approach. The novelty of the improved method lies

in that we repeatedly re-discretize the space in both controlled and random manners

to obtain better solutions. The improved dynamic programming approach provided
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significantly better solutions than the conventional approaches.
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