Skip to main content
Log in

General results on preferential attachment and clustering coefficient

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

This is a review paper that covers some recent results on the behavior of the clustering coefficient in preferential attachment networks and scale-free networks in general. The paper focuses on general approaches to network science. In other words, instead of discussing different fully specified random graph models, we describe some generic results which hold for classes of models. Namely, we first discuss a generalized class of preferential attachment models which includes many classical models. It turns out that some properties can be analyzed for the whole class without specifying the model. Such properties are the degree distribution and the global and average local clustering coefficients. Finally, we discuss some surprising results on the behavior of the global clustering coefficient in scale-free networks. Here we do not assume any underlying model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bansal, S., Khandelwal, S., Meyers, L.A.: Exploring biological network structure with clustered random networks. BMC Bioinform. 10, 405 (2009)

    Article  Google Scholar 

  3. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Sci. 286, 509–512 (1999)

  4. Barabási, A.-L., Albert, R., Jeong, H.: Mean-field theory for scale-free random networks. Phys. A. 272, 173–187 (1999)

  5. Barabási, A.-L., Albert, R., Jeong, H.: The diameter of the world wide web. Nat. 401, 130–131 (1999)

  6. Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation. Cambridge University Press, Cambridge (1987)

    Book  MATH  Google Scholar 

  7. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: structure and dynamics. Phys. Rep. 424(45), 175–308 (2006)

    Article  MathSciNet  Google Scholar 

  8. Bollobás, B., Riordan, O.M.: Mathematical results on scale-free random graphs. In: Handbook of Graphs and Networks: From the Genome to the Internet, pp. 1–34 (2003)

  9. Bollobás, B., Riordan, O.M., Spencer, J., Tusnády, G.: The degree sequence of a scale-free random graph process. Random Struct. Algorithms 18(3), 279–290 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Borgs, C., Brautbar, M., Chayes, J., Khanna, S., Lucier, B.: The power of local information in social networks. In: Internet and Network Economics. LNCS, vol. 7695, pp. 406–419 (2012)

  11. Buchanan, A., Walteros, J.L., Butenko, S., Pardalos, P.M.: Solving maximum clique in sparse graphs: an \(O(nm+n2^{d/4})\) algorithm for \(d\)-degenerate graphs. Optim. Lett. 8(5), 1611–1617 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Britton, T., Deijfen, M., Martin-Löf, A.: Generating simple random graphs with prescribed degree distribution. J. Stat. Phys. 124(6), 1377–1397 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins, A., Wiener, J.: Graph structure in the web. Comput. Netw. 33(16), 309–320 (2000)

    Article  Google Scholar 

  14. Buckley, P.G., Osthus, D.: Popularity based random graph models leading to a scale-free degree sequence. Discret. Math. 282, 53–63 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Catanzaro, M., Caldarelli, G., Pietronero, L.: Assortative model for social networks. Phys. Rev. E. 70, 037101 (2004)

  16. Costa, L. da F., Rodrigues, F.A., Travieso, G., Boas, P.R.U.: Characterization of complex networks: a survey of measurements. Adv. Phys. 56, 167–242 (2007)

  17. Dorogovtsev, S.N., Mendes, J.F.F., Samukhin, A.N.: Assortative model for social networks. Phys. Rev. Lett. 85, 4633 (2000)

    Article  Google Scholar 

  18. Drinea, E., Enachescu, M., Mitzenmacher, M.: Variations on random graph models for the web, technical report. Harvard University, Department of Computer Science (2001)

  19. Eggemann, N., Noble, S.D.: The clustering coefficient of a scale-free random graph. Discret. Appl. Math. 159(10), 953–965 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Erdős, P., Gallai, T.: Graphs with given degrees of vertices. Mat. Lapok 11, 264–274 (1960)

    MATH  Google Scholar 

  21. Faloutsos, M., Faloutsos, P., Faloutsos, Ch.: On power-law relationships of the Internet topology. In: Proc. SIGCOMM’99 (1999)

  22. Girvan, M., Newman, M.E.: Community structure in social and biological networks. Proc. Natl. Acad Sci. 99(12), 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Grechnikov, E.A.: An estimate for the number of edges between vertices of given degrees in random graphs in the Bollobás–Riordan model. Mosc. J. Comb. Number Theory 1(2), 40–73 (2011)

    MathSciNet  Google Scholar 

  24. Grechnikov, E.A.: The degree distribution and the number of edges between vertices of given degrees in the Buckley–Osthus model of a random web graph. J. Internet Math. 8, 257–287 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Holme, P., Kim, B.J.: Growing scale-free networks with tunable clustering. Phys. Rev. E 65(2), 026107 (2002)

    Article  Google Scholar 

  26. Krot, A., Ostroumova Prokhorenkova, L.: Local clustering coefficient in generalized preferential attachment models. In: Algorithms and Models for the Web Graph. LNCS, vol. 9479, pp. 15–28 (2015)

  27. Leskovec, J.: Dynamics of Large Networks, ProQuest (2008)

  28. Molloy, M., Reed, B.: A critical point for random graphs with a given degree sequence. Random Struct. Algorithms 6, 161–179 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  29. Móri, T.F.: The maximum degree of the Barabási–Albert random tree. Comb. Probab. Comput. 14, 339–348 (2005)

    Article  MATH  Google Scholar 

  30. Móri, T.F.: On random trees. In: Studia Sci. Math. Hungar., vol. 39, p. 143155 (2003)

  31. Newman, M.E.J.: Assortative mixing in networks. Phys. Rev. Lett. 89, 208701 (2002)

    Article  Google Scholar 

  32. Newman, M.E.J.: Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46(5), 323–351 (2005)

    Article  Google Scholar 

  33. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Opsahl, T., Panzarasa, P.: Clustering in weighted networks. Soc. Netw. 31(2), 155–163 (2009)

    Article  Google Scholar 

  35. Ostroumova Prokhorenkova, L., Samosvat, E.: Global clustering coefficient in scale-free networks. In: Algorithms and Models for the Web Graph. LNCS, vol. 8882, pp. 47–58 (2014)

  36. Ostroumova Prokhorenkova, L.: Global clustering coefficient in scale-free weighted and unweighted networks. Internet. Math. 12(1–2), 54–67 (2016)

  37. Ostroumova, L., Ryabchenko, A., Samosvat, E.: Generalized preferential attachment: tunable power-law degree distribution and clustering coefficient. In: Algorithms and Models for the Web Graph. LNCS, vol. 8305, pp. 185–202 (2013)

  38. Pastor-Satorras, R., Vázquez, A., Vespignani, A.: Dynamical and correlation properties of the Internet. Phys. Rev. Lett. 87, N25, 258701 (2001)

  39. Ravasz, E., Barabási, A.-L.: Hierarchical organization in complex networks. Phys. Rev. E 67(2) (2003)

  40. Serrano, M.A., Boguñá, M.: Clustering in complex networks. I. General formalism. Phys. Rev. E 74, 056114 (2006)

    Article  MathSciNet  Google Scholar 

  41. Serrano, M.A., Boguñá, M.: Clustering in complex networks. II. Percolation properties. Phys. Rev. E 74, 056115 (2006)

    Article  MathSciNet  Google Scholar 

  42. Vázquez, A., Pastor-Satorras, R., Vespignani, A.: Large-scale topological and dynamical properties of the Internet. Phys. Rev. E 65, 066130 (2002)

    Article  Google Scholar 

  43. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  44. Zhou, T., Yan, G., Wang, B.-H.: Maximal planar networks with large clustering coefficient and power-law degree distribution journal. Phys. Rev. E 71(4), 46141 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grant of RFBR No. 15-01-03530.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liudmila Ostroumova Prokhorenkova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostroumova Prokhorenkova, L. General results on preferential attachment and clustering coefficient. Optim Lett 11, 279–298 (2017). https://doi.org/10.1007/s11590-016-1030-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-016-1030-8

Keywords

Navigation