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FINITE CONVERGENCE ANALYSIS AND WEAK SHARP SOLUTIONS FOR

VARIATIONAL INEQUALITIES

SULIMAN AL-HOMIDAN, QAMRUL HASAN ANSARI, LUONG VAN NGUYEN

Abstract. In this paper, we study the weak sharpness of the solution set of variational inequality

problem (in short, VIP) and the finite convergence property of the sequence generated by some

algorithm for finding the solutions of VIP. In particular, we give some characterizations of weak

sharpness of the solution set of VIP without considering the primal or dual gap function. We establish

an abstract result on the finite convergence property for a sequence generated by some iterative

methods. We then apply such abstract result to discuss the finite termination property of the sequence

generated by proximal point method, exact proximal point method and gradient projection method.

We also give an estimate on the number of iterates by which the sequence converges to a solution of

the VIP.

1. Introduction

Burke and Ferris [2] introduced the concept of weak sharp solutions for an optimization problem

in terms of a gap function and gave its characterization in terms of a geometric condition. Marcotte

and Zhu [6] exploited that geometric condition to introduce the concept of weak sharp solutions for

variational inequalities. They also gave a characterization of weak sharp solutions in terms of a dual

gap function for variational inequalities. It is further studied by Wu and Wu [11]. Recently, Liu

and Wu [5] studied weak sharp solutions for the variational inequality in terms of its primal gap

function. They also characterized the weak sharpness of the solution set of the variational inequality

problem in terms of the primal gap function. They also presented some finite convergence results

of algorithms for the VIP. One of the most important features to study the weak sharpness of the

solution set of the variational inequality problem is that it provides the finite convergence property

to the sequences generated by the algorithms for finding the solution of variational inequalities, see,

e.g., [5, 6, 7, 8, 11].

In this paper, we give some characterizations of weak sharp solutions for the VIP without consider-

ing the primal or dual gap function. Our characterizations give some better estimates for the distance

from any point in the underlying space to the solution set of the VIP than the results obtained by

using primal or dual gap function. We study some abstract results on the finite termination property

for a sequence generated by some iterative methods for finding the solutions of the VIP. As applica-

tions of the abstract results, we discuss the finite termination property of the sequence generated by

the proximal point method, exact proximal point method and gradient projection method. We also

give an estimate on the number of iterates by which the sequence converges to a solution of the VIP.
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2. Preliminaries

Let H be a real Hilbert space whose inner product and norm are denoted by 〈., .〉 and ‖ · ‖,

respectively. We denote by B the unit ball in H. For a given set C in H, we denote by intC the

interior of C and by clC the closure of C. The polar C◦ of C is defined by

C◦ := {x∗ ∈ H : 〈x∗, x〉 ≤ 0 for all x ∈ C} .

For a given x ∈ H, the distance from x to C is defined by

dist(x,C) := inf
y∈C

‖y − x‖,

and the projection of x onto C is defined by

PC(x) := {y ∈ C : ‖y − x‖ = dist(x,C)}.

It is well-known that PC(x) is a singleton set if C is nonempty closed and convex. In this case, PC

is nonexpansive mapping, that is,

‖PC(x)− PC(y)‖ ≤ ‖x− y‖, for all x, y ∈ C.

Let X be a nonempty closed convex subset of H. The tangent cone to X at a point x ∈ X is defined

as

TX(x) := cl

(

⋃

λ>0

X − x

λ

)

.

The normal cone to X at x ∈ X is defined by NX(x) := [TX(x)]◦. In other words,

NX(x) = {x∗ ∈ H : 〈x∗, y − x〉 ≤ 0 for all y ∈ X} .

Let F : X → H be a mapping. The variational inequality problem (in short, VIP) is to find x∗ ∈ X

such that

(2.1) 〈F (x∗), x− x∗〉 ≥ 0, for all x ∈ X.

We denote the solution set of the VIP byX∗. Throughout the paper, we assume that X∗ is nonempty.

For further details on variational inequalities and their applications, we refer to [1, 3] and the refer-

ences therein.

We often consider the VIP with F satisfying certain monotonicity properties. Therefore, we recall

the following definitions of different kinds of monotonicities.

Definition 2.1. The mapping F : X → H is said to be

(a) monotone on X if for any x, y ∈ X,

〈F (x)− F (y), x− y〉 ≥ 0;

(b) inverse strongly monotone on X if there exists µ > 0 such that for any x, y ∈ X,

〈F (x) − F (y), x− y〉 ≥ µ||Fx− Fy||2;

(c) pseudomonotone on X if for any x, y ∈ X,

〈F (x), y − x〉 ≥ 0 ⇒ 〈F (y), y − x〉 ≥ 0;

(d) strongly pseudomonotone on X if there exists µ > 0 such that for any x, y ∈ X,

〈F (x), y − x〉 ≥ 0 ⇒ 〈F (y), y − x〉 ≥ µ||y − x||2;
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(e) pseudomonotone+ on X if F is pseudomonotone on X and for any x, y ∈ X,

〈F (x), y − x〉 ≥ 0 and 〈F (y), y − x〉 = 0 ⇒ F (x) = F (y).

Remark 2.2. It is evident that (b) ⇒ (a), (a) ⇒ (c), (d) ⇒ (c) and (e) ⇒ (c). It is also easy to see

that property (d) implies that the VIP has at most one solution. Moreover, if F is pseudomonotone

then the solution set of the VIP is closed and convex (see, e.g., [1, 3]).

3. Weak Sharp Solutions

Recall the definition of weak sharp solutions for a variational inequality problem in terms of

Marcotte and Zhu [6].

The solution set X∗ of the VIP is weakly sharp provided that F satisfies

(3.1) − F (x∗) ∈ int

(

⋂

x∈X∗

[TX(x) ∩NX∗(x)]◦

)

, for all x∗ ∈ X∗.

Note that if X∗ is weakly sharp, then there exists a constant α > 0 such that

(3.2) αB ⊂ F (x∗) + [TX(x∗) ∩NX∗(x∗)]◦ , for each x∗ ∈ X∗.

It is equivalent to say that for each x∗ ∈ X∗,

(3.3) 〈F (x∗), v〉 ≥ α‖v‖, for all v ∈ TX(x∗) ∩NX∗(x∗),

(see proof of Theorem 4.1 in [6]). We call the constant α in (3.2) or equivalently in (3.3) the modulus

of the weak sharpness of X∗.

For the VIP, an error bound is an estimate for the distance from any point in H to the solution

set X∗. Marcotte and Zhu [6] showed that if F is continuous and pseudomonotone+ on a compact

set X, then X∗ is weakly sharp if and only if there exists some α > 0 such that

αdist(x,X∗) ≤ G(x), for all x ∈ X,

where G is the dual gap function associated to VIP and defined by

G(x) := max
z∈X

〈F (z), x − z〉

= 〈F (ỹ), x− ỹ〉,(3.4)

where ỹ is any point in the set Λ(x) := argmaxz∈X〈F (z), x−z〉. We note that the pseudomonotonicity+

of F on X implies that F is constant on X∗ (see, e.g., Proposition 2 in [5]).

Recently, Liu and Wu [5] gave an error bound in term of the primal gap function for the VIP

defined by

(3.5)
g(x) := maxz∈X〈F (x), x − z〉

= 〈F (x), x − z〉 for z ∈ Γ(x),

where Γ(x) := {z ∈ X : 〈F (x), x − z〉 = g(x)} for x ∈ H. They showed that if F is monotone on

X and constant on Γ(x∗) for some x∗ ∈ X∗, g(x) < +∞, g is Gâteaux differentiable and locally

Lipschitz on X∗, then X∗ is weakly sharp if and only if there is some α > 0 such that

αdist(x,X∗) ≤ g(x), for all x ∈ X.

We also note that if F is pseudomonotone on X and constant on Γ(x∗) for some x∗ ∈ X∗ then F is

constant on X∗ (see Proposiotion 4 in [5]).
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We give some characterizations of weak sharpness of the solution set of VIP without using the

dual gap or the primal gap function. We note that in [6] (respectively, in [5]), the authors gave

an error bound in term of the dual gap function G (respectively, the primal gap function g). They

therefore needed some more assumptions. In fact, Marcotte and Zhu [6] assumed that the set X is

compact; this implies the continuous differentiability of G. Liu and Wu [5] required that g is Gâteaux

differentiable. Our proofs follow the lines in [6] and [5] but with some modifications.

Theorem 3.1. Let X be a nonempty closed convex subset of H and F : X → H be continuous on X

and pseudomonotone+ on X. Let the solution set X∗ of the VIP be nonempty. Then X∗ is weakly

sharp if and only if there exists a positive constant α such that

(3.6) 〈F (PX∗(x)), x− PX∗(x)〉 ≥ α dist(x,X∗), for all x ∈ X.

Proof. Assume that X∗ is weakly sharp and let x ∈ X. Then, we have

x− PX∗(x) ∈ TX(PX∗(x)) ∩NX∗(PX∗(x))

and

‖x− PX∗(x)‖ = dist(x,X∗).

Thus, by (3.3), we have

〈F (PX∗(x)), x− PX∗(x)〉 ≥ α ‖x− PX∗(x)‖ = α dist(x,X∗).

Conversely, assume that (3.6) is satisfied for some α > 0. We show that (3.2) holds. Let x∗ ∈ X∗. It

is evident that (3.2) holds if TX(x∗)∩NX∗(x∗) = {0}. We now assume that TX(x∗)∩NX∗(x∗) 6= {0}.

Let 0 6= v ∈ TX(x∗) ∩NX∗(x∗). Then for each y∗ ∈ X∗, we have

〈v, v〉 > 0 and 〈v, y∗ − x∗〉 ≤ 0.

This implies that the set X∗ is separated from x∗ + v by the hyperplane

Hv = {x ∈ H : 〈v, x − x∗〉 = 0}.

Since v ∈ TX(x∗), for each positive sequence {tk} converging to 0, there exists a sequence {vk}

converging to v such that x∗+ tkvk ∈ X for sufficiently large k. Since 〈v, vk〉 > 0 for sufficiently large

k, x∗ + tkvk lies in the open set {x ∈ H : 〈v, x−x∗〉 > 0}. Therefore, for sufficiently large k, we have

dist (x∗ + tkvk,X
∗) ≥ dist (x∗ + tkvk,Hv) =

tk〈v, vk〉

‖v‖
.

Then by (3.6), for sufficiently large k, we have

〈F (PX∗(x∗ + tkvk)), x
∗ + tkvk − PX∗(x∗ + tkvk)〉 ≥ αdist (x∗ + tkvk,X

∗)

≥ αtk
〈v, vk〉

‖v‖
,

or, equivalently,

(3.7)

〈

F (PX∗(x∗ + tkvk)), vk +
x∗ − PX∗(x∗ + tkvk)

tk

〉

≥ α
〈v, vk〉

‖v‖
.
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Since tk > 0 and v ∈ NX∗(x∗), one has x∗ = PX∗(x∗ + tkv). Then, by the nonexpansiveness of the

projection mapping, we obtain
∣

∣

∣

∣

∣

∣

∣

∣

vk +
x∗ − PX∗(x∗ + tkvk)

tk
− v

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

vk − v +
PX∗(x∗ + tkv)− PX∗(x∗ + tkvk)

tk

∣

∣

∣

∣

∣

∣

∣

∣

≤ ‖vk − v‖+ ‖v − vk‖

= 2‖vk − v‖ → 0 as k → ∞.

Thus,

vk +
x∗ − PX∗(x∗ + tkvk)

tk
→ v as k → ∞.

Taking the limit as k → ∞ in both sides of (3.7) and using the continuity of F and PX∗ , we obtain

〈F (x∗), v〉 ≥ α‖v‖.

It follows that

αB ⊆ F (x∗) + [TX(x∗) ∩NX∗(x∗)]o.

Since F is pseudomonotone+ on X, so it is constant on X∗. This together with the latter inclusion

imply that X∗ is weakly sharp.

�

Theorem 3.2. Let X be a nonempty, closed and convex subset of a Hilbert space H and F : X → H

be a mapping. Assume that the solution set X∗ of the VIP is nonempty, closed and convex.

(a) If X∗ is weakly sharp and F is monotone, then there exists a positive constant α > 0 such

that

(3.8) 〈F (x), x − PX∗(x)〉 ≥ αdist(x,X∗), for all x ∈ X.

(b) If F is constant on X∗ and continuous on X and (3.8) holds for some α > 0, then X∗ is

weakly sharp.

Proof. (a) Since X∗ is weakly sharp, there is a constant α > 0 such that for all x∗ ∈ X∗,

〈F (x∗), z〉 ≥ α‖z‖, for all z ∈ TX(x∗) ∩NX∗(x∗).

For x ∈ X, we have

x− PX∗(x) ∈ TX(PX∗(x)) ∩NX∗(PX∗(x)),

and

‖x− PX∗(x)‖ = dist(x,X∗).

Thus,

(3.9) 〈F (PX∗(x)), x − PX∗(x)〉 ≥ α ‖x− PX∗(x)‖ = αdist(x,X∗).

Since F is monotone, we have

〈F (PX∗(x)), x − PX∗(x)〉 ≤ − 〈F (x), PX∗(x)− x〉 .

Combining this with the inequality (3.9), we get

α dist(x,X∗) ≤ 〈F (x), x − PX∗(x)〉 .

(b) Let x∗ ∈ X∗. We first show that

(3.10) αB ⊂ F (x∗) + [TX(x∗) ∩NX∗(x∗)]◦ .
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This is obvious if TX(x∗) ∩ NX∗(x∗) = {0}. So, we assume that TX(x∗) ∩ NX∗(x∗) 6= {0}. Let

0 6= v ∈ TX(x∗)∩NX∗(x∗). Then for each positive sequence {tk} converging to 0, there is a sequence

{vk} converging to v and x∗ + tkvk ∈ X. As in proof of Theorem 3.1, we have, for sufficiently large

k, that

dist (x∗ + tkvk,X
∗) ≥

tk〈v, vk〉

‖v‖
.

By (3.8), we get

〈F (x∗ + tkvk), x
∗ + tkvk − PX∗(x∗ + tkvk)〉 ≥ α dist (x∗ + tkvk,X

∗)

≥ α tk
〈v, vk〉

‖v‖
,

or, equivalently,
〈

F (x∗ + tkvk), vk +
x∗ − PX∗(x∗ + tkvk)

tk

〉

≥ α
〈v, vk〉

‖v‖
.

As in proof of Theorem 3.1, letting k → ∞ in the latter inequality, we get

〈F (x∗), v〉 ≥ α‖v‖.

Thus, (3.10) holds. Since F is constant on X∗, we conclude that X∗ is weakly sharp.

�

4. Finite Termination Property

In this section, we study the finite termination property of a sequence generated by an algorithm

for finding the solutions of the VIP. In particular, we first establish an abstract result on the finite

termination of the sequences. We then apply such result to discuss the finite termination property

of proximal point method, exact proximal point method and gradient projection method.

Throughout this section, we assume that X is a nonempty, closed and convex subset of a Hilbert

space H and F : X → H is a mapping. We mention the following result due to Matsushita and Xu

[7] which will be used in the sequel.

Lemma 4.1. [7] Let x ∈ X, then

max {〈v,−F (x)〉 : v ∈ TX(x), ‖v‖ ≤ 1} =
∥

∥PTX (x)(−F (x))
∥

∥ .

Our first result of this section is stated as follows.

Theorem 4.2. Let F be monotone on X, X∗ be weakly sharp and {xk} be a sequence in X. Then,

xk ∈ X∗ for all k sufficiently large if and only if

(4.1) lim
k→∞

PTX (xk) (−F (xk)) = 0.

Proof. If there exists k0 such that xk ∈ X∗ for all k ≥ k0, then −F (xk) ∈ NX(xk) for all k ≥ k0.

Hence, (4.1) holds trivially.

Suppose, on the contrary, that the inverse implication does not hold. Then there exists a sub-

sequence of {xk} which is still denoted by {xk} such that xk 6∈ X∗ for all k. For each k, set

yk := PX∗(xk) ∈ X∗. Then, we have xk − yk ∈ TX(yk) ∩ NX∗(yk). By Theorem 3.1, there exists

α > 0 such that

α‖xk − yk‖ = α dist(xk,X
∗) ≤ 〈F (yk), xk − yk〉, for all k.
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Thus, by the monotonicity of F , we have

α ≤

〈

F (yk),
xk − yk

||xk − yk||

〉

=

〈

−F (xk),
xk − yk

||xk − yk||

〉

+
1

||xk − yk||
〈F (xk)− F (yk), yk − xk〉

≤ max {〈v,−F (xk)〉 : v ∈ TX(xk), ‖v‖ ≤ 1}

= PTX(xk) (−F (xk)) .

Letting k → ∞ and using (4.1), we obtain α ≤ 0 which contradicts the fact that α > 0. Therefore,

xk ∈ X∗ for all sufficiently large k.

�

Remark 4.3. Marcotte and Zhu in [6] obtained the finite termination of an algorithm for the VIP

under assumption that F is pseudomonotone+ and continuous on a compact convex set in R
n. Xiu

ang Zhang [13] improved the result of Marcotte and Zhu [6] by assuming F is continuous and pseu-

domonotone. Zhou and Wang [14] established the finite termination without using any monotonicity

property on the underlying mapping. All the mentioned results require (4.1) and the strong conver-

gence of the sequence {xk}. Matsushita and Xu [7] relaxed the strong convergence of {xk} by the

strong convergence of {PX∗(xk)} to some point in X∗ and, in addition, they assumed that the map-

ping F is monotone. Since we do not need the strong convergence of {PX∗(xk)}, our result improves

the result given by Matsushita and Xu [7].

4.1. Proximal Point Method. We now apply our results to study the finite termination property

of proximal point method for solving a monotone variational inequality. We consider the following

proximal point algorithm [10] for solving the VIP: x1 ∈ H and

(4.2) xn+1 = Jγn(xn + en), n = 1, 2, . . . ,

where γn ∈ (0,∞), en ∈ H and Jγn = (I + γnT )
−1 with T : H ⇒ H defined by

(4.3) T (x) :=

{

F (x) +NX(x), if x ∈ X,

∅, otherwise.

Note that, for all x ∈ H and r > 0, the inclusion

(4.4) x ∈ xr + rT (xr)

has a unique solution xr ∈ H (see, e.g., [9]).

From (4.3) and (4.4), we have

xn + en ∈ (I + γn(F +NX)) (xn+1), for all n.

Then

xn + en − xn+1 − γnF (xn+1) ∈ γnNX(xn+1) = NX(xn+1).

It follows that

(4.5) 〈xn + en − xn+1 − γnF (xn+1), y − xn+1〉 ≤ 0 for all y ∈ X.

This is equivalent to

(4.6) xn+1 = PX(xn − γnF (xn+1) + en), n = 1, 2, . . .
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The following result provides the finite convergence property of proximal point method (4.6).

Theorem 4.4. Let F be monotone and {xn} be a sequence generated by (4.6) such that lim infn→∞ γn >

0. Suppose that the following conditions hold:

(i) {xn+1 − xn} converges strongly to 0;

(ii) {en} converges strongly to 0.

If X∗ is weakly sharp, then xn ∈ X∗ for all sufficiently large n.

Proof. Since

〈xn + en − xn+1 − γnF (xn+1), y − xn+1〉 ≤ 0, for all y ∈ X,

we have, for all y ∈ X, that

〈F (xn+1), xn+1 − y〉 ≤
1

γn
(〈xn − xn+1, xn+1 − y〉+ 〈en, xn+1 − y〉)

≤
1

γn
(‖xn − xn+1‖ ‖xn+1 − y‖+ ‖en‖ ‖xn+1 − y‖) .(4.7)

Assume that the conclusion is false. Then, there exists a subsequence {xni
} of {xn} such that

xni
6∈ X∗ for all i. For each i, set yni

= PX∗(xni
). Then xni

6= yni
for all i. By Theorem 3.2 (a), for

some α > 0, we have

(4.8) 〈F (xni
), xni

− yni
〉 ≥ α dist(xni

,X∗) = α ‖xni
− yni

‖.

Taking n := ni and y := yni+1 in (4.7) and using (4.8), we get

α‖xni+1 − yni+1‖ ≤
1

γni

(‖xni
− xni+1‖ ‖xni+1 − yni+1‖+ ‖eni

‖ ‖xni+1 − yni+1‖) ,

and then

α ≤
1

γni

(‖xni
− xni+1‖+ ‖eni

‖) .

Since lim infn→∞ γn > 0, limn→∞ en = 0 and xn+1 − xn → 0 as n → ∞, it follows from the latter

inequality that α ≤ 0 which contradicts the fact that α > 0. Therefore, xn ∈ X∗ for all sufficiently

large n.

�

Remark 4.5. Theorem 4.4 is an improvement of Theorem 3.1 in [8] because we do not require that

{PX∗(xk)} converges strongly to some point in X∗.

4.2. Exact Proximal Point Method. We now study the finite termination propery for the exact

proximal point method:

(4.9) xn+1 = PX (xn − γnF (xn+1)) , n = 1, 2, . . .

This is the case in (4.6) we take en = 0, n = 1, 2, . . ..

Theorem 4.6. Let F : X → H be monotone and X∗ be weakly sharp with modulus α > 0. Let {xn}

be the sequence generated by (4.9) with, for some positive number a, γn ∈ [a,+∞) for all n. Then,

{xn} converges to a point in X∗ in atmost ℓ iterations with

ℓ ≤
dist(x1,X

∗)2

a2α2
+ 1.
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Proof. From Rockafellar [10], we know that for x∗ ∈ X∗

(4.10) ‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 − ‖xn+1 − xn‖
2, n = 1, 2, . . . .

This implies that limn→∞ ‖xn − x∗‖ exists and limn→∞ ‖xn+1 − xn‖ = 0. By Theorem 4.4, xn ∈ X∗

for all sufficiently large n.

Now, for 1 < N ∈ N, we have from (4.10) that

‖x1 − x∗‖2 ≥ ‖x2 − x∗‖2 + ‖x2 − x1‖
2

≥ ‖x3 − x∗‖2 + ‖x3 − x2‖
2 + ‖x2 − x1‖

2

...

≥ ‖xN+1 − x∗‖2 +
N
∑

i=1

‖xi+1 − xi‖
2

≥
N
∑

i=1

‖xi+1 − xi‖
2.

Therefore, for all N > 1,

(4.11) dist (x1,X
∗)2 = inf

x∗∈X∗

||x1 − x∗||2 ≥
N
∑

i=1

||xi+1 − xi||
2.

Since limn→∞ ‖xn+1 − xn‖ = 0, we let ℓ be the smallest integer such that ||xℓ+1 − xℓ|| < aα.

If xℓ+1 6∈ X∗, then we set yℓ+1 = PX∗(xℓ+1). By Theorem 3.2 (a) and (4.5), we have

α‖xℓ+1 − yℓ+1‖ = α dist (xℓ+1,X
∗)

≤ 〈F (xℓ+1), xℓ+1 − yℓ+1〉

≤
1

γℓ
〈xℓ − xℓ+1, xℓ+1 − yℓ+1〉

≤
1

γℓ
‖xℓ − xℓ+1‖ ‖xℓ+1 − yℓ+1‖.

This implies that γℓ α ≤ ‖xℓ+1−xℓ‖ < aα, or, equivalently, γℓ < a which contradicts our assumption

that γℓ ≥ a. Thus, xℓ+1 ∈ X∗. Hence, we have

dist (x1,X
∗)2 ≥

ℓ−1
∑

i=1

‖xi+1 − xi‖
2 ≥ (ℓ− 1)a2 α2.

Therefore,

ℓ ≤
dist (x1,X

∗)2

a2α2
+ 1.

�

Remark 4.7. If follows from Theorem 4.6 that if γ1 is chosen to be sufficiently large, i.e., a suffi-

ciently large, then the exact proximal point algorithm has one step termination. Hence, Theorem 4.6

is an extension of Theorem 4.3 in [13].
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4.3. Gradient Projection Method. We now establish the finite termination property of the fol-

lowing gradient projection method:

(4.12) xn+1 = PX(xn − γnF (xn)), n = 1, 2, . . . .

This is the case when we take en := γn(F (xn+1)− F (xn)), n = 1, 2, . . . in (4.6).

The finite termination property for the method (4.12) was studied in [8, 12]. Xiu and Zhang [12]

established the finite termination of a modification of (4.12) by adding a vanishing error term under

the nondegeneracy assumption. To obtain their results, they also assumed the strongly convergence

of the sequence generated by the method. Matsushita and Xu [8] dropped the assumption that the

sequence converges strongly and obtained the finite termination property of (4.12) in Hilbert spaces

under the assumption that F is inverse strongly monotone. Here, we study the finite termination

property of (4.12) under the assumption that F is strongly pseudomonotone and monotone at the

same time.

Assume F is strongly pseudomonotone. Then the VIP has unique solution, say x∗. If, in addition,

F is monotone and X∗ = {x∗} is weakly sharp with modulus α, then by Theorem 3.2 (a), we have

α‖x− x∗‖ ≤ 〈F (x), x− x∗〉, for all x ∈ X.

Lemma 4.8. Let F : X → H be strongly pseudomonotone with the modulus µ and Lipschitz contin-

uous with the constant L. Let {xn} be the sequence generated by (4.12). If x∗ is a unique solution

of the VIP, then

(4.13)
[

1 + γn(2µ − γnL
2)
]

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2, for all n = 1, 2, . . .

and

(4.14)
(

1− γ2n
)

‖xn+1 − xn‖
2 ≤

(

L2 − 2γnµ− 1
)

‖xn+1 − x∗‖2 + ‖xn − x∗‖2, for all n = 1, 2, . . .

Proof. We only prove (4.14). For the proof of (4.13), see [4].

Since en = γn(F (xn+1)− F (xn)), it follows from (4.5) that

〈xn − γnF (xn)− xn+1, y − xn+1〉 ≤ 0, for all y ∈ X.

Taking y = x∗ in the latter inequality, one obtains

(4.15) 〈xn − xn+1, x
∗ − xn+1〉 ≤ γn 〈F (xn), x

∗ − xn+1〉 .

Since x∗ ∈ X∗, we have

〈F (x∗), x− x∗〉 ≥ 0, for all x ∈ X.

Hence, by the strong pseudomonotonicity of F , we get

〈F (x), x− x∗〉 ≥ µ||x− x∗||2, for all x ∈ X.

By the Cauchy-Schwarz inequality and the Lipschitz continuity of F , we obtain

γn〈F (xn), x
∗ − xn+1〉 = −γn〈F (xn+1), x

∗ − xn+1〉+ γn〈F (xn)− F (xn+1), x
∗ − xn+1〉

≤ −γnµ‖xn+1 − x∗‖2 + γn‖F (xn)− F (xn+1)‖ ‖x
∗ − xn+1‖

≤ −γnµ‖xn+1 − x∗‖2 + γnL‖xn − xn+1‖ ‖x
∗ − xn+1‖

≤ −γnµ‖xn+1 − x∗‖2 +
1

2
γ2n‖xn − xn+1‖

2 +
1

2
L2‖x∗ − xn+1‖

2

=
1

2

[

(L2 − 2γnµ)‖xn+1 − x∗‖2 + γ2n‖xn − xn+1‖
2
]

.(4.16)
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On the other hand,

(4.17) 〈xn − xn+1, x
∗ − xn+1〉 =

1

2

(

‖xn+1 − xn‖
2 + ‖xn+1 − x∗‖2 − ‖xn − x∗‖2

)

.

From (4.15) - (4.17), we have

‖xn+1 − xn‖
2 + ‖xn+1 − x∗‖2 − ‖xn − x∗‖2 ≤ (L2 − 2γnµ)‖xn+1 − x∗‖2 + γ2n||xn − xn+1||

2.

Then, we obtain (4.14).

�

Theorem 4.9. Let F : X → H be strongly pseudomonotone with the modulus µ and Lipschitz with

the constant L. Let {xn} be the sequence generated by (4.12). Suppose that

(4.18)
L2

2µ
≤ γn ≤ σ < 1, for all n = 1, 2, . . .

where σ is a positive constant. Assume further that F is monotone and X∗ = {x∗} is weakly sharp

with modulus α. Then, {xn} converges to x∗ in atmost ℓ iterates with

ℓ ≤
‖x1 − x∗‖2(2µ + L3)2

(1− σ2)α2L4
+ 1.

Proof. It follows from (4.18) that 2µ − γnL
2 ≥ 0 for all n. Hence, (4.13) implies

‖xn+1 − x∗‖ ≤ ‖xn − x∗‖, for all n,

and then limn→∞ ‖xn − x∗‖ = a ∈ [0,∞). By (4.18) and (4.14), we have

(4.19) (1− σ2)‖xn+1 − xn‖
2 ≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2, for all n.

Using (4.19) and progressing as in the proof of Theorem 4.6, we obtain

(4.20) ‖x1 − x∗‖2 ≥
(

1− σ2
)

N
∑

i=1

‖xi+1 − xi‖
2, for all N > 1.

Moreover, letting n → ∞ in the both sides of (4.19), we get

lim
n→∞

‖xn+1 − xn‖ = 0.

Let ℓ be the smallest integer such that

(4.21) ‖xℓ+1 − xℓ‖ <
L2α

2µ+ L3
.

If xℓ+1 6= x∗, then by the weak sharpness of the solution set X∗, the Lipschitz continuity of F and

(4.7), we have

α‖xℓ+1 − x∗‖ ≤ 〈F (xℓ+1), xℓ+1 − x∗〉

≤
1

γℓ
(‖xℓ − xℓ+1‖ ‖xℓ+1 − x∗‖+ ‖eℓ‖ ‖xℓ+1 − x∗‖)

=
1

γℓ
(‖xℓ − xℓ+1‖ ‖xℓ+1 − x∗‖+ γℓ‖F (xℓ)− F (xℓ+1)‖ ‖xℓ+1 − x∗‖)

≤

(

1

γℓ
+ L

)

‖xℓ − xℓ+1‖ ‖xℓ+1 − x∗‖

≤

(

2µ

L2
+ L

)

‖xℓ − xℓ+1‖ ‖xℓ+1 − x∗‖
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This implies

‖xℓ+1 − xℓ‖ ≥
αL2

2µ+ L3
,

which contradicts (4.21). Thus, xℓ+1 = x∗. It follows from (4.19) that

‖x1 − x∗‖2 ≥ (1− σ2)

ℓ−1
∑

i=1

‖xi+1 − xi‖
2 ≥ (1− σ2)(ℓ− 1)

α2L4

(2µ + L3)2
,

and so,

ℓ ≤
‖x1 − x∗‖2(2µ + L3)2

(1− σ2)α2L4
+ 1.

�
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