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1 Introduction

Convex analysis has been well recognized as an important area of mathematics with numer-

ous applications to optimization, control, economics, and many other disciplines. We refer

the reader to the fundamental monographs [3, 4, 11, 16, 21] and the bibliographies therein

for various aspects of convex analysis and its applications. Jon Borwein, who unexpectedly

passed away on August 2, 2016, made pivotal contributions to these and related fields of

Applied Mathematics, among other areas of his fantastic creative activity.

Methods and constructions of convex analysis play also a decisive role in the study of non-

convex functions and sets by using certain convexification procedures. In particular, calculus

and applications of Clarke’s generalized gradients for nonconvex functions [9] is based on

appropriate convexifications and employing techniques and results of convex analysis.

Besides this, other ideas have been developed in the study and applications of nonconvex

functions, sets, and set-valued mappings in the framework of variational analysis, which em-

ploys variational/optimization principles married to perturbation and approximation tech-

niques; see the books [7, 12, 18] for extended expositions in finite and infinite dimensions.

Powerful tools, results, and applications of variational analysis have been obtained by us-

ing the dual-space geometric approach [12] based on the extremal principle (a geometric

variational principle) for systems of sets. This approach produces first a full calculus of gen-

eralized normals to nonconvex sets and then applies it to establish comprehensive calculus

rules for related subgradients of extended-real-valued functions and coderivatives of set-

valued mappings. Needless to say that well-developed calculus of generalized differentiation

is an unavoidable requirement and the key for various applications.

Addressing generally nonconvex objects, results of variational analysis contain correspond-

ing convex facts as their particular cases. However, basic variational techniques involving

limiting procedures do not fully capture advantages from the presence of convexity. Indeed,

the major calculus results of [12] hold in Asplund spaces (i.e., such Banach spaces where

every separable subspace has a separable dual) and the closedness of sets (epigraphs for

extended-real-valued function, graphs for set-valued mappings) is a standing assumption.

The major goal of this paper is to investigate a counterpart of the variational geometric

approach to the study of convex sets in locally convex topological vector (LCTV) spaces

without any completeness and closedness assumptions. Based on an enhanced notion of set

extremality, which is a global version of the corresponding local concept largely developed

and applied in [12] while occurring to be particularly useful in the convex setting mainly

exploited here, this approach allows us to obtain the basic intersection rule for normals

to convex sets under a new qualification condition. The same approach also allows us to

derive new calculus results for support functions of convex set intersections in general LCTV

spaces. Note that these results can be used to obtain major calculus rules of generalized

differentiation and Fenchel conjugates for extended-real-valued convex functions; cf. our

previous publications [13, 14] for some versions in finite dimensions.

The rest of the paper is organized as follows. In Section 2 we introduce the aforementioned

version of set extremality, establish its relationships with the separation property for convex
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sets, and derive various extremality conditions. The obtained results are applied in Section 3

to get the normal cone representation for convex set intersections under a new qualification

condition. In Section 4 this approach is employed to represent the support function of set

intersections via the infimal convolution of supports to intersection components.

For simplicity of presentation we suppose, unless otherwise stated, that all the spaces under

consideration are normed linear spaces. The reader can check that the results obtained

below in this setting hold true in the LCTV space generality.

The notation used throughout the paper is standard in the areas of functional, convex, and

variational analysis; cf. [12, 16, 18, 21]. Recall that the closed ball centered at x̄ with radius

r > 0 is denoted by B(x̄; r) while the closed unit ball of the space X in question and its

topological dual X∗ are denoted by B and B
∗, respectively, if no confusion arises. Given

a convex set Ω ⊂ X, we write R
+(Ω) := {tv ∈ X| t ∈ R+, v ∈ Ω}, where R+ signifies

the collection of positive numbers, and use the symbol Ω for the topological closure of Ω.

Finally, remind the notation for the (algebraic) core of a set:

coreΩ :=
{
x ∈ Ω

∣∣ ∀ v ∈ X ∃ γ > 0 such that x+ tv ∈ Ω whenever |t| < γ
}
. (1.1)

In what follow we deal with extended-real-valued functions f : X → R := (−∞,∞] and

assume that are proper, i.e., dom f := {x ∈ X| f(x) < ∞} 6= ∅.

2 Extremal Systems of Sets

We start this section with the definition of extremality for set systems, which is inspired

by the notion of local set extremality in variational analysis (see [12, Definition 2.1]) while

having some special features that are beneficial for convex sets. In particular, we do not

require that the sets have a common point.

Definition 2.1 (set extremality). We say that two nonempty sets Ω1,Ω2 ⊂ X form an

extremal system if for any ε > 0 there exists a ∈ X such that

‖a‖ ≤ ε and (Ω1 + a) ∩ Ω2 = ∅. (2.1)

Observe similarly to [12] that the notion of set extremality introduced in Definition 2.1 covers

(global) optimal solutions to problems of constrained optimization with scalar, vector, and

set-valued objectives, various equilibrium concepts arising in operations research, mechanics,

and economic modeling, etc. Furthermore, the set extremality naturally arises in deriving

calculus rules of generalized differentiation in variational analysis. In particular, we are

going to demonstrate this below in our device of the normal cone intersection rule and the

support function representation for convex set intersections presented in the paper.

Given a convex set Ω ⊂ X with x̄ ∈ Ω, the normal cone to Ω at x̄ is

N(x̄; Ω) :=
{
x∗ ∈ X∗

∣∣ 〈x∗, x− x̄〉 ≤ 0 for all x ∈ Ω
}
. (2.2)

The following underlying result establishes a useful characterization of set extremality and

shows that, in the case of convex sets, extremality is closely related to while being different
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from the conventional convex separation:

sup
x∈Ω1

〈x∗, x〉 ≤ inf
x∈Ω2

〈x∗, x〉 for some x∗ 6= 0. (2.3)

Note that if Ω1,Ω2 are convex sets such that x̄ ∈ Ω1 ∩ Ω2, then (2.3) is equivalent to

N(x̄; Ω1) ∩
(
−N(x̄; Ω2)

)
6= {0}. (2.4)

Theorem 2.2 (set extremality and separation). Let Ω1,Ω2 ⊂ X be nonempty sets.

Then the following assertions are fulfilled:

(i) The sets Ω1 and Ω2 form an extremal system if and only if 0 /∈ int(Ω1−Ω2). Furthermore,

the extremality of Ω1,Ω2 implies that (int Ω1) ∩ Ω2 = ∅ and likewise (int Ω2) ∩ Ω1 = ∅.

(ii) If Ω1,Ω2 are convex and form an extremal system and if int(Ω1 − Ω2) 6= ∅, then the

separation property (2.3) holds.

(iii) The separation property (2.3) always implies the set extremality (2.1), without imposing

either the convexity of Ω1,Ω2 or the condition int(Ω1 − Ω2) 6= ∅ as in (ii).

Proof. To verify the extremality characterization in (i), suppose first that the sets Ω1,Ω2

form an extremal system while the condition 0 /∈ int(Ω1 − Ω2) fails. Then there is r > 0

such that B(0; r) ⊂ Ω1 − Ω2. Put ε := r and observe that −a ∈ Ω1 − Ω2 for any a ∈ X

with ‖a‖ ≤ ε, which gives us (Ω1 + a) ∩ Ω2 6= ∅ and thus contradicts (2.1). To justify the

converse implication in (i), suppose that 0 /∈ int(Ω1 − Ω2). Then for any ε > 0 we get

B(0; ε) ∩
(
X \ (Ω1 − Ω2)

)
6= ∅,

which tells us that there is a ∈ X such that ‖a‖ < ε and −a ∈ Ω1 −Ω2, i.e., (2.1) holds. It

remains to show in (i) that the extremality of Ω1,Ω2 yields (int Ω1)∩Ω2 = ∅. Assuming the

contrary, take x ∈ intΩ1 with x ∈ Ω2 and find ε > 0 such that x− a ∈ Ω1 for any a ∈ X

with ‖a‖ < ε. This clearly contradicts (2.1) and thus completes the proof of (i).

Next we verify (ii). Consider the two convex sets Λ1 := Ω1 − Ω2 and Λ2 := {0} in X.

By the extremality of Ω1,Ω2 we have due to (i) that (int Λ1) ∩ Λ2 = ∅, where int Λ1 6= ∅

by the assumption in (ii). The classical separation theorem applied to Λ1,Λ2 tells us that

supx∈Ω1−Ω2
〈x∗, x〉 ≤ 0, which is clearly equivalent to (2.3). Thus assertion (ii) is justified.

To prove the final assertion (iii), take x∗ 6= 0 from (2.3) and find c ∈ X such that 〈x∗, c〉 > 0.

For any ε > 0 we can select a := −c/k satisfying ‖a‖ < ε when k ∈ IN is sufficiently large.

Let as show that (2.1) holds with this vector a. If it is not the case, then there exists x̂ ∈ Ω2

such that x̂− a ∈ Ω1. By the separation property (2.3) we have

〈x∗, x̂− a〉 ≤ sup
x∈Ω1

〈x∗, x〉 ≤ inf
x∈Ω2

〈x∗, x〉 ≤ 〈x∗, x̂〉,

which gives us by the above construction of a ∈ X that

〈x∗, x̂〉 − 〈x∗, a〉 = 〈x∗, x̂〉+ k〈x∗, c〉 ≤ 〈x∗, x̂〉,

and therefore 〈x∗, c〉 ≤ 0. It contradicts the choice of c ∈ X and hence justifies assertion

(iii) while completing in this way the proof of the theorem. �
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Corollary 2.3 (sufficient conditions for extremality of convex sets). Let Ω1,Ω2 be

nonempty convex sets of X satisfying the conditions int Ω1 6= ∅ and (int Ω1)∩Ω2 = ∅. Then

the sets Ω1 and Ω2 form an extremal system. Furthermore, we have int(Ω1 − Ω2) 6= ∅.

Proof. It is well known that the assumptions imposed in the corollary ensure the separation

property for convex sets. Thus the set extremality of Ω1,Ω2 follows from Theorem 2.2(iii).

To verify the last assertion of the corollary, take any x̄ ∈ int Ω1 and find r > 0 such that

intB(x̄; r) ⊂ Ω1. Then for any fixed point x ∈ Ω2 we have

V := intB(x̄; r)− x ⊂ Ω1 − Ω2,

and thus int(Ω1 − Ω2) 6= ∅ because V is a nonempty open subset of X. �

Remark 2.4 (on the extremal principle). Condition (2.4) is known to hold, under the

name of the (exact) extremal principle, for locally extremal points of nonconvex sets. In

[12, Theorem 2.22] it is derived for closed subsets of Asplund spaces with the replacement

of (2.2) by the basic/limiting normal cone of Mordukhovich, which reduces to (2.2) for

convex sets. Besides the Asplund space requirement, the aforementioned result of [12]

imposes the sequential normal compactness (SNC) assumption on one of the sets Ω1,Ω2.

This property is satisfied for convex sets under the interiority assumption of Corollary 2.3;

see [12, Proposition 1.25]. Furthermore, in the case of closed convex sets in Banach spaces

the SNC property offers significant advantages for the validity of (2.4) in comparison with

the interiority condition due to the SNC characterization from [12, Theorem 1.21]: a closed

convex set Ω with nonempty relative interior (i.e., the interior of it with respect to its span)

is SNC at every x̄ ∈ Ω if and only if the closure of the span of Ω is of finite codimension.

A similar characterization has been obtained in [5, Theorem 2.5] for the more restrictive

Borwein-Strójwas’ compactly epi-Lipschitzian (CEL) property [6] of closed convex sets in

normed spaces. Note that the CEL and SNC properties may not agree even for closed convex

cones in nonseparable Asplund spaces; see [10] for comprehensive results and examples.

As established in Theorem 2.2(ii), the set extremality in (2.1) implies the separation prop-

erty (2.3) and its equivalent form (2.4) whenever x̄ ∈ Ω1∩Ω2 under the nonempty difference

interior int(Ω1 −Ω2) 6= ∅ for arbitrary convex sets Ω1,Ω2 in LCTV spaces. Could we relax

this assumption? The next theorem shows that it can be done, for closed convex subsets of

Banach spaces, in both approximate and exact forms of the convex extremal principle. Fur-

thermore, the results obtained therein justify that both of these forms are characterizations

of the convex set extremality under the SNC property of one of the sets involved without

imposing any interiority assumption on them or their difference.

To proceed, recall first the definition of the SNC property used below for convex sets;

compare it with a nonconvex counterpart from [12, Definition 1.20]. A subset Ω ⊂ X of a

Banach space is SNC at x̄ ∈ Ω if for any sequence {(xk, x
∗
k)}k∈IN ⊂ X ×X∗ we have

[
x∗k ∈ N(xk; Ω), xk ∈ Ω, xk → x̄, x∗k

w∗

→ 0
]
=⇒ ‖x∗k‖ → 0 as k → ∞, (2.5)

where the normal cone is taken from (2.2), and where the symbol
w∗

→ signifies the sequential

convergence in the weak∗ topology of X∗. We have already mentioned in Remark 2.4 the
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explicit description of the SNC property for closed convex sets with nonempty relative

interiors in Banach spaces given in [12, Theorem 1.21]. Assertion (ii) of the next theorem

employs SNC (2.5) for furnishing the limiting procedure in general Banach spaces.

Theorem 2.5 (approximate and exact versions of the convex extremal principle

in Banach spaces). Let Ω1 and Ω2 be closed convex subsets of a Banach space X, and let

x̄ be any common point of Ω1,Ω2. Consider the following assertions:

(i) The sets Ωi, i = 1, 2, form an extremal system in X.

(ii) For each ε > 0 we have:

∃xi ∈ B(x̄; ε) ∩ Ωi, ∃ x∗i ∈ N(xiε; Ωi) + εB∗ with x∗1 + x∗2 = 0, ‖x∗1‖ = ‖x∗2‖ = 1. (2.6)

(iii) The equivalent properties (2.3) and (2.4) are satisfied.

Then we always have the implication (i)=⇒(ii). Furthermore, all the properties in (i)–(iii)

are equivalent if in addition either Ω1 or Ω2 is SNC at x̄.

Proof. Let us begin with verifying (i)=⇒ (ii). It follows from the extremality condition

that for any ε > 0 there exists a ∈ X such that

‖a‖ ≤ ε2 and (Ω1 + a) ∩ Ω2 = ∅.

Define the convex, lower semicontinuous, and bounded from below function f : X2 → R by

f(x1, x2) := ‖x1 − x2 + a‖+ δ
(
(x1, x2); Ω1 × Ω2

)
, (x1, x2) ∈ X2, (2.7)

via the indicator function of the closed set Ω1×Ω2. It follows from (2.1) that f(x1, x2) > 0

on X × X and f(x̄, x̄) = ‖a‖ ≤ ε2 for any x̄ ∈ Ω1 × Ω2. Applying to (2.7) the Ekeland

variational principle (see, e.g., [12, Theorem 2.26(i)]), we find a pair (x1ε, x2ε) ∈ Ω1 × Ω2

satisfying ‖x1ε − x̄‖ ≤ ε, ‖x2ε − x̄‖ ≤ ε, and

f(x1ε, x2ε) ≤ f(x1, x2) + ε
(
‖x1 − x1ε‖+ ‖x2 − x2ε‖

)
for all (x1, x2) ∈ X2.

The latter means that the function ϕ(x1, x2) := f(x1, x2)+ε
(
‖x1−x1ε‖+‖x2−x2ε‖) attains

its minimum on X2 at (x1ε, x2ε) with ‖x1ε − x2ε − a‖ 6= 0. Thus the generalized Fermat

rule tells us that 0 ∈ ∂ϕ(x1ε, x2ε). Taking into account the summation structure of f in

(2.7), we apply to its subdifferential the classical Moreau-Rockafellar theorem that allows

us to find—by standard subdifferentiation of the norm and indicator functions—such dual

elements x∗iε ∈ N(xiε; Ωi) + εB∗ for i = 1, 2 that all the conditions in (2.6) are satisfied.

This justifies assertion (ii) of the theorem.

We verify next the validity of (ii)=⇒(iii) by furnishing the passage to the limit in (2.6) as

ε ↓ 0 with the help of the SNC property of, say, the set Ω1 at x̄. Take a sequence εk ↓ 0 as

k → ∞ and find by (2.6) the corresponding septuples (x1k, x2k, x
∗
k, x

∗
1k, x

∗
2k, e

∗
1k, e

∗
2k) so that

x1k → x̄, x2k → x̄ as k → ∞, and

x∗k = x∗1k + εke
∗
1k, x

∗
k = −x∗2k + εke

∗
2k, ‖x

∗
k‖ = 1, x∗ik ∈ N(xik; Ω1), e

∗
ik ∈ B

∗ (2.8)
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for all k ∈ IN and i = 1, 2. The classical Banach-Alaoglu theorem of functional analysis

tells us that for any Banach space X the sequence of triples (x∗k, e
∗
1k, e

∗
2k) contains a subnet

converging to some (x∗, e∗1, e
∗
2) ∈ B

∗ ×B
∗ ×B

∗ in the weak∗ topology of X∗. It follows from

(2.8) and definition (2.2) of the normal cone to convex sets that the corresponding subnets

of {x∗
1k, x

∗
2k)} converge in the latter topology to some pair (x∗1, x

∗
2) ∈ X∗ × X∗ satisfying

x∗1 = −x∗2 = x∗ and x∗i ∈ N(x̄; Ωi) for i = 1, 2.

To justify (iii), it remains to show that we can always find x∗ 6= 0 in this way provided that

Ω1 is SNC at x̄. Assuming the contrary, let us first check that {x∗
1k} converges to zero in

the weak∗ topology. If it is not the case, there is z ∈ X such that the numerical sequence

{〈x∗
1k, z〉} does not converge to zero. Fix w ∈ Ω1 and for each k ∈ IN consider the set

Vk :=
{
z∗ ∈ X∗

∣∣ |〈z∗, w − x̄〉 − 〈x∗1, w − x̄〉| < 1/k, |〈z∗, z〉 − 〈x∗1, z〉| < 1/k
}
, (2.9)

which is a neighborhood of x∗1 in the weak∗ topology of X∗. By extracting numerical

subsequences in (2.9), suppose without loss of generality that

〈x∗1k, w − x̄〉 → 〈x∗1, w − x̄〉 and 〈x∗1k, z〉 → 〈x∗1, z〉 as k → ∞.

Remembering that x∗
1k ∈ N(x1k; Ω1) by (2.8) gives us the estimate

〈x∗1k, w − x̄〉 = 〈x∗1k, w − x1k〉+ 〈x∗1k, x1k − x̄〉 ≤ 〈x∗1k, x1k − x̄〉, k ∈ IN. (2.10)

Note that 〈x∗
1k, w − x̄〉 → 〈x∗1, w − x̄〉 and |〈x∗

1k, x1k − x̄〉| ≤ ‖x∗
1k‖ · ‖x1k − x̄‖ → 0 as

k → ∞ by the boundedness of {x∗
1k} in (2.8). Passing now to the limit in (2.10) tells us

that 〈x∗1, w − x̄〉 ≤ 0 and so x∗1 ∈ N(x̄; Ω1). It follows from (2.8) that −x∗1 ∈ N(x̄; Ω2) and

thus x∗1 ∈ N(x̄; Ω1) ∩ (−N(x̄; Ω2)) = {0}, which contradicts the imposed assumption on

〈x∗
1k, z〉 → 0. Therefore the sequence {x∗

1k} converges to zero in the weak∗ topology of X∗,

which implies its sequential convergence x∗
1k

w∗

−−→ 0 as well. By the assumed SNC property

of Ω1 at x̄ we conclude that x∗
1k

‖·‖
−−→ 0 while yielding x∗k

‖·‖
−−→ 0. This surely contradicts (2.8)

and thus ends the proof of implication (ii)=⇒(iii).

To check finally the equivalence assertion in (iii), observe that the separation property (2.3)

ensures by Theorem 2.2(iii) that the sets Ω1,Ω2 form an extremal system in X, and so we

have conditions (2.6) in (i). Since implication (i)=⇒(ii) has been verified above, this readily

justifies the claimed equivalences in (iii) and thus completes the proof of theorem. �

As an immediate consequence of the (convex) approximate extremal principle in Theo-

rem 2.5(ii), we obtain the celebrated Bishop-Phelps theorem for closed convex sets in gen-

eral Banach spaces; see [15, Theorem 3.18]. Recall that x̄ ∈ Ω is a support point of Ω ⊂ X

if there is 0 6= x∗ ∈ X∗ such that the function x 7→ 〈x∗, x〉 attaints its supremum on Ω at x̄.

Corollary 2.6 (Bishop-Phelps theorem). Let Ω be a nonempty, closed, and convex

subset of a Banach space X. Then the support points of Ω are dense on the boundary of Ω.

Proof. It is obvious from (2.1) and the definition of boundary points that for any boundary

point x̄ of Ω, the sets Ω1 := {x̄} and Ω2 := Ω form an extremal system in X. Then the

result follows from (2.6) and the normal cone structure in (2.2). �
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Note that a geometric approach involving the approximate extremality conditions (2.6) at

points nearby may be useful for applications to the so-called sequential convex subdifferential

calculus initiated by Attouch-Baillon-Théra [1] and Thibault [20] in different frameworks

and then developed in other publications. Likewise it can be applied as a geometric device

of coderivative and conjugate calculus rules, which is our intention in the future research.

3 Normal Cone Intersection Rule

In this section we employ the set extremality and the results of Theorem 2.2 to obtain the

exact intersection rule for the normal cone (2.2) under a new qualification condition.

The following theorem justifies a precise representation of the normal cone N(x̄; Ω1∩Ω2) via

normals to each sets Ω1 and Ω2 under the new qualification condition (3.1) depending on x̄,

which is weaker than the standard interiority condition in LCTV spaces. For convenience

we refer to (3.1) as to the bounded extremality condition.

Theorem 3.1 (intersection rule). Let Ω1,Ω2 ⊂ X be convex, and let x̄ ∈ Ω1 ∩ Ω2.

Suppose that there exists a bounded convex neighborhood V of x̄ such that

0 ∈ int
(
Ω1 − (Ω2 ∩ V )

)
. (3.1)

Then we have the normal cone intersection rule

N(x̄; Ω1 ∩ Ω2) = N(x̄; Ω1) +N(x̄; Ω2). (3.2)

Proof. To verify (3.2) under the qualification condition (3.1), denote A := Ω1 and B :=

Ω2 ∩ V and observe that 0 ∈ int(A − B) and B is bounded. Fixing an arbitrary normal

x∗ ∈ N(x̄;A ∩B), we get by (2.2) that 〈x∗, x− x̄〉 ≤ 0 for all x ∈ A ∩B. Consider the sets

Θ1 := A× [0,∞) and Θ2 :=
{
(x, µ) ∈ X × R

∣∣ x ∈ B, µ ≤ 〈x∗, x− x̄〉
}
. (3.3)

It follows from the constructions of Θ1 and Θ2 that for any α > 0 we have

(
Θ1 + (0, α)

)
∩Θ2 = ∅,

and thus these sets form an extremal system by Definition 2.1. Employing Theorem 2.2(i)

tells us that 0 /∈ int(Θ1 − Θ2). To check next that int(Θ1 −Θ2) 6= ∅, take r > 0 such that

U := B(0; r) ⊂ A−B. The boundedness of the set B allows us to choose λ̄ ∈ R satisfying

λ̄ ≥ sup
x∈B

〈−x∗, x− x̄〉. (3.4)

Then we get int(Θ1 −Θ2) 6= ∅ by showing that U × (λ̄,∞) ⊂ Θ1 −Θ2. To verify the latter,

fix any (x, λ) ∈ U × (λ̄,∞) for which we clearly have x ∈ U ⊂ A − B and λ > λ̄, and so

x = w1 − w2 with some w1 ∈ A and w2 ∈ B. This implies in turn the representation

(x, λ) = (w1, λ− λ̄)− (w2,−λ̄).
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Further, it follows from λ− λ̄ > 0 that (w1, λ− λ̄) ∈ Θ1, and we deduce from (3.3) and (3.4)

that (w2,−λ̄) ∈ Θ2, which shows that int(Θ1 −Θ2) 6= ∅. Applying now Theorem 2.2(ii) to

the sets Θ1,Θ2 in (3.3) gives us y∗ ∈ X∗ and γ ∈ R such that (y∗, γ) 6= (0, 0) and

〈y∗, x〉+ λ1γ ≤ 〈y∗, y〉+ λ2γ whenever (x, λ1) ∈ Θ1, (y, λ2) ∈ Θ2. (3.5)

Using (3.5) with (x̄, 1) ∈ Θ1 and (x̄, 0) ∈ Θ2 yields γ ≤ 0. Supposing γ = 0, we get

〈y∗, x〉 ≤ 〈y∗, y〉 for all x ∈ A, y ∈ B.

Since U ⊂ A − B, it readily produces y∗ = 0, a contradiction, which shows that γ < 0.

Employing next (3.5) with (x, 0) ∈ Θ1 for x ∈ A and (x̄, 0) ∈ Θ2 tells us that

〈y∗, x〉 ≤ 〈y∗, x̄〉 for all x ∈ A, and so y∗ ∈ N(x̄;A).

Using finally (3.5) with (x̄, 0) ∈ Θ1 and (y, 〈x∗, y − x̄〉) ∈ Θ2 for y ∈ B implies that

〈y∗, x̄〉 ≤ 〈y∗, y〉+ γ〈x∗, y − x̄〉 for all y ∈ B.

Dividing both sides of the obtained inequality by γ < 0, we arrive at

〈x∗ + y∗/γ, y − x̄〉 ≤ 0 for all y ∈ B,

which verifies by (2.2) the validity of the inclusions

x∗ ∈ −y∗/γ +N(x̄;B) ⊂ N(x̄;A) +N(x̄;B)

and thus shows that N(x̄;A ∩ B) ⊂ N(x̄;A) + N(x̄;B). The opposite inclusion therein is

trivial, and so we get the equality N(x̄;A ∩B) = N(x̄;A) +N(x̄;B). Since N(x̄;A ∩B) =

N(x̄; Ω1 ∩ Ω2) and N(x̄;B) = N(x̄; Ω2), it justifies (3.2) and completes the proof. �

Remark 3.2 (comparing qualification conditions for the normal intersection for-

mula). We have the following useful observations:

(i) It is easy to see that, if one of the sets Ω1,Ω2 is bounded, the introduced qualification

condition (3.1) reduces to the difference interiority condition

0 ∈ int(Ω1 − Ω2). (3.6)

Furthermore, (3.1) surely holds under the validity of the classical interiority condition Ω1∩

(int Ω2) 6= ∅, which is the only condition previously known to us that ensures the validity of

the intersection formula (3.2) in the general LCTV (or even normed) space setting. Indeed,

if the latter condition is satisfied, take u ∈ Ω1 ∩ (int Ω2) and γ > 0 such that u+ γB ⊂ Ω2.

Then we choose r > 0 with u+ γB ⊂ Ω2 ∩ B(x̄; r). Thus γB ⊂ Ω1 − (Ω2 ∩ B(x̄; r)) and so

0 ∈ int(Ω1 − (Ω2 ∩ V )), where V := B(x̄; r).

As the following simple example shows, the bounded extremality condition (3.1) may be

weaker than the classical interiority condition even in R
2. Indeed, consider the convex sets

Ω1 := R× [0,∞) and Ω2 := {0} × R
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for which Ω1 ∩ (int Ω2) = ∅, while the conditions 0 ∈ int(Ω1 − Ω2) and (3.1) hold.

(ii) If X is Banach and both sets Ω1,Ω2 are closed with int(Ω1 − Ω2) 6= ∅, the difference

interiority condition (3.6) reduces to Rockafellar’s core qualification condition 0 ∈ core(Ω1−

Ω2) introduced in [17]. This follows from the equivalence

[
0 ∈ core(Ω1 − Ω2)

]
⇐⇒

[
0 ∈ int(Ω1 − Ω2)

]
(3.7)

valid in this case. Indeed, the implication “⇐=” in (3.7) is obvious due to int Ω ⊂ coreΩ

for any set. To verify the opposite implication in (3.7), recall that int Ω = core Ω for closed

convex subsets of Banach spaces by [7, Theorem 4.1.8]. Using now the well-known fact that

int Ω = intΩ for convex sets with nonempty interiors yields

0 ∈ core
(
Ω1 − Ω2

)
= int

(
Ω1 − Ω2

)
= int

(
Ω1 − Ω2

)
.

Note that the core qualification condition is superseded in the same setting by the require-

ment that R
+(Ω1 − Ω2) ⊂ X is a closed subspace, which is known as the Attouch-Brézis

regularity condition established in [2] with the usage of convex duality and the fundamental

Banach-Dieudonné-Krein-Šmulian theorem in general Banach spaces.

The next proposition shows that the core condition 0 ∈ core(Ω1−Ω2) implies the extremality

one (3.1) for closed subsets of reflexive Banach spaces provided that int(Ω1−Ω2) 6= ∅. Thus

the extremality approach of Theorem 3.1 offers in this setting a simplified proof of the

intersection formula in comparison with those known in the literature.

Proposition 3.3 (bounded extremality condition in reflexive spaces). The qual-

ification condition (3.1) holds at any x̄ ∈ Ω1 ∩ Ω2 if X is a reflexive Banach space and

Ω1,Ω2 ⊂ X are closed convex sets such that int(Ω1 − Ω2) 6= ∅ and 0 ∈ core(Ω1 − Ω2).

Proof. Fix any number r > 0 and show that

0 ∈ core
(
Ω1 ∩ B(x̄; r)− Ω2 ∩ B(x̄; r)

)
. (3.8)

Indeed, the assumption int(Ω1 − Ω2) 6= ∅ allows us to find γ > 0 such that γB ⊂ Ω1 − Ω2.

For any x ∈ X denote u := γ
‖x‖+1

x ∈ γB and get u = w1 − w2 with wi ∈ Ωi for i = 1, 2.

Hence there is a constant γ̄ > 0 depending on x and r for which

tmax
{
‖w1 − x̄‖, ‖w2 − x̄‖

}
< r whenever 0 < t < γ̄.

This readily justifies the relationships

tu = tw1 − tw2 =
(
x̄+ t(w1 − x̄)

)
−

(
x̄+ t(w2 − x̄)

)
∈
(
Ω1 ∩ B(x̄; r)

)
−

(
Ω2 ∩ B(x̄; r)

)

for all 0 < t < γ̄ and thus establishes the claimed inclusion (3.8) by the core definition (1.1).

Since X is reflexive and the sets Ωi∩B(x̄; r), i = 1, 2, are closed and bounded in X, they are

weakly sequentially compact in this space. This implies that their difference
(
Ω1∩B(x̄; r)

)
−(

Ω2 ∩ B(x̄; r)
)
is closed in X. Then we get by [7, Theorem 4.1.8] that

0 ∈ core
(
Ω1∩B(x̄; r)−Ω2∩B(x̄; r)

)
= int

(
Ω1∩B(x̄; r)−Ω2∩B(x̄; r)

)
⊂ int

(
Ω1−Ω2∩B(x̄; r)

)
,

which verifies (3.1) and thus completes the proof of the proposition. �
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4 Support Functions for Set Intersections

In this section we derive a precise representation of support functions for convex set inter-

sections via the infimal convolution of the support functions to the intersection components

under the difference interiority condition (3.6). This result under (3.6) seems to be new in

the literature on convex analysis in LCTV (and also in normed) spaces; see Remark 4.2 for

more discussions. Furthermore, we present a novel geometric device for results of this type

by employing set extremality and the normal intersection rule obtained above.

Recall that the support function of a nonempty set Ω ⊂ X is given by

σΩ(x)(x
∗) := sup{〈x∗, x〉

∣∣ x ∈ Ω
}
, x∗ ∈ X∗. (4.1)

The infimal convolution of two functions f, g : X → R is

(f ⊕ g)(x) := inf
{
f(x1) + g(x2)

∣∣ x1 + x2 = x
}
= inf

{
f(u) + g(x− u)

∣∣ u ∈ X
}
. (4.2)

Theorem 4.1 (support functions for set intersections via infimal convolutions).

Let the sets Ω1,Ω2 ⊂ X be nonempty and convex, and let and one of them be bounded. Then

the difference interiority condition (3.6) ensures the representation

(σΩ1∩Ω2
)(x∗) = (σΩ1

⊕ σΩ2
)(x∗) for all x∗ ∈ X∗. (4.3)

Moreover, for any x∗ ∈ dom(σΩ1∩Ω2
) there are x∗1, x

∗
2 ∈ X∗ such that x∗ = x∗1 + x∗2 and

(σΩ1∩Ω2
)(x∗) = σΩ1

(x∗1) + σΩ2
(x∗2). (4.4)

Proof. First we check that the inequality “≤” in (4.3) holds in the general setting. Fix

any x∗ ∈ X∗ and pick x∗1, x
∗
2 ∈ X∗ such that x∗ = x∗1 + x∗2. Then it follows from (4.1) that

〈x∗, x〉 = 〈x∗1, x〉+ 〈x∗2, x〉 ≤ σΩ1
(x∗1) + σΩ2

(x∗2) whenever x ∈ Ω1 ∩ Ω2.

Taking the infimum on the right-hand side above with respect to all x∗1, x
∗
2 ∈ X∗ satisfying

x∗1 + x∗2 = x∗ gives us by definition (4.2) of the infimal convolution that

〈x∗, x〉 ≤ (σΩ1
⊕ σΩ2

)(x∗).

This verifies and the inequality “≤” in (4.3) by taking the supremum on the left-hand side

therein with respect to x ∈ Ω1 ∩ Ω2.

To justify further the opposite inequality in (4.3) under the validity of (3.6), suppose that

Ω2 is bounded. It suffices to consider the case where x∗ ∈ dom (σΩ1∩Ω2
) and prove the

inequality “≤” in (4.4); then the one in (4.3) and both statements of the theorem follow.

To proceed, denote α := (σΩ1∩Ω2
)(x∗) ∈ R, for which we clearly have 〈x∗, x〉 − α ≤ 0

whenever x ∈ Ω1 ∩Ω2, and then construct the two nonempty convex subsets of X × R by

Θ1 := Ω1 × [0,∞) and Θ2 :=
{
(x, λ) ∈ X × R

∣∣ x ∈ Ω2, λ ≤ 〈x∗, x〉 − α
}
. (4.5)
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Observe that the sets Θ1,Θ2 form an extremal system. Indeed, it follows from the choice of

α and the construction in (4.5) that for any γ > 0 we have

(
Θ1 + (0, γ)

)
∩Θ2 = ∅.

Then Theorem 2.2(i) tells us that 0 /∈ int(Θ1 − Θ2). Arguing similarly to the proof of

Theorem 3.1, we see that the condition int(Θ1 − Θ2) 6= ∅ holds for the sets in (4.5). Thus

Theorem 2.2(ii) allows us to find a pair (y∗, β) 6= (0, 0) such that

〈y∗, x〉+ λ1β ≤ 〈y∗, y〉+ λ2β whenever (x, λ1) ∈ Θ1, (y, λ2) ∈ Θ2. (4.6)

Choosing (x̄, 1) ∈ Θ1 and (x̄, 0) ∈ Θ2 in (4.6) shows that β ≤ 0. If β = 0, then

〈y∗, x〉 ≤ 〈y∗, y〉 for all x ∈ Ω1, y ∈ Ω2.

By int(Ω1 − Ω2) 6= ∅ this yields y∗ = 0, a contradiction justifying the negativity of β in

(4.6). Take now (x, 0) ∈ Θ1 and (y, 〈x∗, y〉 − α) ∈ Θ2 in (4.6) and then get

〈y∗, x〉 ≤ 〈y∗, y〉+ β(〈x∗, y〉 − α),

which can be equivalently rewritten (due to β < 0) as

α ≥
〈
y∗/β + x∗, y

〉
+

〈
− y∗/β, x

〉
for all x ∈ Ω1, y ∈ Ω2.

Denoting x∗1 := y∗/β + x∗ and x∗2 := −y∗/β, we have x∗1 + x∗2 = x∗ and 〈x∗1, x〉+ 〈x∗2, y〉 ≤ α

for all x ∈ Ω1 and y ∈ Ω2. This shows that

σΩ1
(x∗1) + σΩ2

(x∗2) ≤ α = σΩ1∩Ω2
(x∗)

and thus completes the proof of the theorem. �

Remark 4.2 (comparison with Fenchel duality). Since the qualification condition

(3.1) used in Theorem 3.1 is equivalent to (3.6) employed in Theorem 4.1 when one of the

sets Ω1,Ω2 is bounded, all the comments given in Remark 3.2 are applied here. On the other

hand, there is a remarkable feature of the calculus rules for support functions presented in

Theorem 4.1, which does not have analogs in the setting of Theorem 3.1 and should be

specially commented. Namely, the support function (4.1) is the Fenchel conjugate

f∗(x∗) := sup
{
〈x∗, x〉 − f(x)

∣∣ x ∈ X
}
, x∗ ∈ X∗,

of the indicator function f(x) := δ(x; Ω) of a given set Ω ⊂ X, and hence a well-developed

conjugate calculus can be applied to establish representations (4.3) and (4.4); see, e.g., the

books [8, 17, 19, 21] and the references therein. However, it seems to us that such an

approach from Fenchel duality misses the specific results of Theorem 4.1 derived for the

support function under the qualification condition (3.6) in general LCTV spaces. Observe

also that, in contrast to analytical schemes usually applied to deriving conjugate calculus

and then deducing results of the type of Theorems 3.1 and 4.1 from them, we develop here

a geometric approach in the other direction based on set extremality.
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