Skip to main content
Log in

Globally optimized packings of non-uniform size spheres in \(\mathbb {R}^{d}\): a computational study

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this work we discuss the following general packing problem: given a finite collection of d-dimensional spheres with (in principle) arbitrarily chosen radii, find the smallest sphere in \(\mathbb {R}^{d}\) that contains the given d-spheres in a non-overlapping arrangement. Analytical (closed-form) solutions cannot be expected for this very general problem-type: therefore we propose a suitable combination of constrained nonlinear optimization methodology with specifically designed heuristic search strategies, in order to find high-quality numerical solutions in an efficient manner. We present optimized sphere configurations with up to \(n = 50\) spheres in dimensions \(d = 2, 3, 4, 5\). Our numerical results are on average within 1% of the entire set of best known results for a well-studied model-instance in \(\mathbb {R}^{2}\), with new (conjectured) packings for previously unexplored generalizations of the same model-class in \(\mathbb {R}^{d}\) with \(d= 3, 4, 5.\) Our results also enable the estimation of the optimized container sphere radii and of the packing fraction as functions of the model instance parameters n and 1 / n, respectively. These findings provide a general framework to define challenging packing problem-classes with conjectured numerical solution estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Black, K., Chakrapani, C., Castillo, I.: Business Statistics for Contemporary Decision Making, 2nd Canadian edn. Wiley, Toronto (2014)

  2. Castillo, I., Kampas, F.J., Pintér, J.D.: Solving circle packing problems by global optimization: numerical results and industrial applications. Eur. J. Oper. Res. 191, 786–802 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Castillo, I., Sim, T.: A spring-embedding approach for the facility layout problem. J. Oper. Res. Soc. 55, 73–81 (2004)

    Article  MATH  Google Scholar 

  4. Chaikin, P.M.: Thermodynamics and hydrodynamics of hard spheres: the role of gravity. In: Cates, M.E., Evans, M.R. (eds.) Soft and Fragile Matter: Nonequilibrium Dynamics, Metastability and Flow, vol. 53, pp. 315–348. Institute of Physics Publishing, Bristol (2000)

    Chapter  Google Scholar 

  5. Chaikin, P.M., Lubensky, T.C.: Principles of Condensed Matter Physics. Cambridge University Press, New York (2000)

    Google Scholar 

  6. Cheng, Z.D., Russell, W.B., Chaikin, P.M.: Controlled growth of hard-sphere colloidal crystals. Nature 401, 893–895 (1999)

    Article  Google Scholar 

  7. Cohn, H.: Order and disorder in energy minimization. In: Proceedings of the International Congress of Mathematicians, Hyderabad, India, pp. 2416–2443. Hindustan Book Agency, New Delhi (2010)

  8. Cohn, H., Kumar, A., Miller, S.D., Radchenko, D., Viazovska, M.S.: The sphere packing problem in dimension 24. (2016) arXiv:1603.06518v1

  9. Conway, J.H.: Sphere packings, lattices, codes, and greed. In: Proceedings of the International Congress of Mathematicians, Zürich, Switzerland 1994, pp. 45–55. Birkhäuser Verlag, Basel (1995)

  10. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups, 3rd edn. Springer Science + Business Media, New York (1998)

    MATH  Google Scholar 

  11. de Gennes, P.G.: Granular matter: a tentative view. Rev. Mod. Phys. 71, S374–S382 (1999)

    Article  Google Scholar 

  12. Fasano, G.: Solving Non-standard Packing Problems by Global Optimization and Heuristics. Springer, New York (2014)

    Book  MATH  Google Scholar 

  13. Fasano, G., Pintér, J.D. (eds.): Optimized Packings with Applications. Springer, New York (2015)

    MATH  Google Scholar 

  14. Fejes Tóth, L.: Regular Figures. Pergamon Press, Macmillan, New York (1964)

    MATH  Google Scholar 

  15. Friedman, E.: Erich’s Packing Center. (2017). http://www2.stetson.edu/~efriedma/packing.html

  16. GNU Project: The GNU Compiler Collection (GCC). (2015). https://gcc.gnu.org/

  17. Griess, R.L.: Positive definite lattices of rank at most 8. J. Number Theory 103, 77–84 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Griess, R.L.: An Introduction to Groups and Lattices: Finite Groups and Positive Definite Rational Lattices. International Press, Somerville, MA (2011)

    MATH  Google Scholar 

  19. Hales, T.C.: A proof of the Kepler conjecture. Ann. Math. 162, 1065–1185 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hifi, M., M’Hallah, R.: A literature review on circle and sphere packing problems: models and methodologies. In: Advances in Operations Research (2009). doi:10.1155/2009/150624

  21. Jadrich, R., Schweizer, K.S.: Equilibrium theory of the hard sphere fluid and glasses in the metastable regime up to jamming. I. Thermodynamics. J. Chem. Phys. (2013a). doi:10.1063/1.4816275

  22. Jadrich, R., Schweizer, K.S.: Equilibrium theory of the hard sphere fluid and glasses in the metastable regime up to jamming. II. Structure and application to hopping dynamics. J. Chem. Phys. (2013b). doi:10.1063/1.4816276

  23. Kampas, F.J., Pintér, J.D.: Configuration analysis and design by using optimization tools in Mathematica. Math. J. 10, 128–154 (2006)

    Google Scholar 

  24. Kepler, J.: The Six-Cornered Snowflake. Oxford Classic Texts in the Physical Sciences (Illustrated reprint). Oxford University Press, Oxford (2014)

    Google Scholar 

  25. Leech, J.: Notes on sphere packings. Can. J. Math. 19, 251–267 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  26. Melissen, J.B.M.: Packing and Covering with Circles. Ph.D. Dissertation, Universiteit Utrecht (1997)

  27. Nesterenko, V.F.: Dynamics of Heterogeneous Materials. Springer, New York (2001)

    Book  Google Scholar 

  28. Olmos, L., Martin, C.L., Bouvard, D.: Sintering of mixtures of powders: experiments and modelling. Powder Technol. 190, 134–140 (2009)

    Article  Google Scholar 

  29. Pintér, J.D.: Global Optimization in Action. Kluwer, Dordrecht (1996)

    Book  MATH  Google Scholar 

  30. Pintér, J.D.: LGO—a program system for continuous and Lipschitz global optimization. In: Bomze, I., Csendes, T., Horst, R., Pardalos, P.M. (eds.) Developments in Global Optimization, pp. 183–197. Kluwer, Dordrecht (1997)

    Chapter  Google Scholar 

  31. Pintér, J.D.: Globally optimized spherical point arrangements: model variants and illustrative results. Ann. Oper. Res. 104, 213–230 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Pintér, J.D.: LGO—A Model Development and Solver System for Global–Local Nonlinear Optimization, User’s Guide, Current edn. Published and distributed by Pintér Consulting Services Inc, Halifax, NS (2016)

    Google Scholar 

  33. Pintér, J.D.: How difficult is nonlinear optimization? A practical solver tuning approach, with illustrative results. Ann. Oper. Res. (2017). doi:10.1007/s10479-017-2518-z

  34. Pintér, J.D., Kampas, F.J.: Nonlinear optimization in Mathematica with MathOptimizer Professional. Math. Educ. Res. 10(1), 1–18 (2005)

    Google Scholar 

  35. Pintér, J.D., Kampas, F.J.: MathOptimizer Professional: key features and illustrative applications. In: Liberti, L., Maculan, N. (eds.) Global Optimization: From Theory to Implementation, pp. 263–280. Springer, New York (2006)

    Chapter  Google Scholar 

  36. Pintér, J.D., Kampas, F.J.: Benchmarking nonlinear optimization software in technical computing environments. I. Global optimization in Mathematica with MathOptimizer Professional. TOP 21, 133–162 (2013)

    Article  MATH  Google Scholar 

  37. Pintér, J.D., Kampas, F.J.: Getting Started with MathOptimizer Professional. Published and distributed by Pintér Consulting Services Inc, Halifax, NS (2015)

    Google Scholar 

  38. Riskin, M.D., Bessette, K.C., Castillo, I.: A logarithmic barrier approach to solving the dashboard planning problem. INFOR 41, 245–257 (2003)

    Google Scholar 

  39. Sahimi, M.: Heterogeneous Materials I: Linear Transport and Optical Properties. Springer, New York (2003a)

    MATH  Google Scholar 

  40. Sahimi, M.: Heterogeneous Materials II: Nonlinear and Breakdown Properties and Atomistic Modeling. Springer, New York (2003b)

    MATH  Google Scholar 

  41. Sloane, N.J.A.: The sphere-packing problem. (2002) arXiv:math/0207256

  42. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423, 623–656 (1948)

  43. Specht, E.: (2017). http://www.packomania.com

  44. Stortelder, W.J.H., de Swart, J.J.B., Pintér, J.D.: Finding elliptic Fekete point sets: two numerical solution approaches. J. Comput. Appl. Math. 130, 205–216 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  45. Steinby, M., Thomas, W.: Trees and term rewriting in 1910: On a paper by Axel Thue. Bull. Eur. Assoc. Theor. Comput. Sci. 72, 256–269 (2000)

    MathSciNet  Google Scholar 

  46. Szabó, P.G., Markót, M.Cs, Csendes, T., Specht, E., Casado, L.G., García, I.: New Approaches to Circle Packing in a Square With Program Codes. Springer, New York (2007)

    MATH  Google Scholar 

  47. Szpiro, G.G.: Kepler’s Conjecture. Wiley, New York (2003)

    MATH  Google Scholar 

  48. Thue, A.: Om nogle geometrisk taltheoretiske theoremer. Forhdl. Skand. Naturforsk. 14, 352–353 (1892)

    MATH  Google Scholar 

  49. Thue, A.: Über die dichteste Zusammenstellung von kongruenten Kreisen in der Ebene. Christ. Vid. Selsk. Skr. 1, 3–9 (1910)

    MATH  Google Scholar 

  50. Torquato, S.: Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Springer, New York (2002)

    Book  MATH  Google Scholar 

  51. Viazovska, M.S.: The sphere packing problem in dimension 8. (2016). arXiv:1603.04246

  52. Wolfram Research: Mathematica (Release 11, December 2016). Wolfram Research Inc, Champaign, IL (2016)

  53. Zallen, R.: The Physics of Amorphous Solids. Wiley, New York (1983)

    Book  Google Scholar 

  54. Zohdi, T.I.: Variational bounds for thermal fields in media with heterogeneous microstructure. Math. Mech. Solids 19, 434–439 (2014a)

    Article  MathSciNet  MATH  Google Scholar 

  55. Zohdi, T.I.: Additive particle deposition and selective laser processing: a computational manufacturing framework. Comput. Mech. 54, 171–191 (2014b)

    Article  MATH  Google Scholar 

  56. Zong, C.: Sphere Packings (edited by Talbot, J.) Springer, New York (1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Castillo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pintér, J.D., Kampas, F.J. & Castillo, I. Globally optimized packings of non-uniform size spheres in \(\mathbb {R}^{d}\): a computational study. Optim Lett 12, 585–613 (2018). https://doi.org/10.1007/s11590-017-1194-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-017-1194-x

Keywords

Navigation