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1 Introduction

This article aims to study a novel parameterized proximal point method for
solving the following two-block separable convex optimization problem

min f(x) + g(y)
s.t. Ax+By = c,

x ∈ X , y ∈ Y,
(1)

where f(x) : Rm → R and g(y) : Rn → R are closed and proper convex
functions, but not necessarily smooth; A ∈ Rl×m, B ∈ Rl×n and c ∈ Rl are
given matrices and vectors, respectively; X ⊂ Rm and Y ⊂ Rn are closed
convex sets. Throughout the paper, we assume the solution set of the problem
(1) is nonempty and the matrices A and B have full column rank.

It is well-known in the literature that proximal point methods are a class
of benchmark methods for solving the problem (1). The Proximal Point Algo-
rithm (PPA) was originally proposed for solving monotone operator inclusion
problems [21,22] and then became popularized to convex programmings by
Rockafellar [24] and Eckstein[10]. As demonstrated in [24], the augmented La-
grangian method [25] for solving the problem (1) is actually an application of
PPA to its dual problem. And the recently very popular Alternating Direction
Method of Multipliers (ADMM) can be also regarded as another special vari-
ant of PPA to the dual problem [9]. Due to its simplicity for implementation,
efficiency and strong theoretical background, the PPA has attracted extensive
researches in recent years for solving structured convex optimization problems,
especially by the optimizers from the areas involving lots of structured data,
such as compressed sensing, image processing and machine learning, etc.

There is very rich literature on PPA. Combettes and Pennanen [6] showed
some conditions for the viability and weak convergence of an inexact Relaxed
PPA (R-PPA) for finding a common zero of countably many cohypomono-
tone operators in Hilbert space. Later, based on the closed-form expressions
for the proximity operators [7], Combettes et al.[2] still derived expressions
of new proximity operators in product spaces and presented an extension of
PPA for solving the multicomponent signal/image processing problems. Re-
cently, PPA was extensively studied for a class of multi-criteria optimization
problems with the difference of convex objective functions, whose efficiency
was demonstrated by testing a multi-period portfolio minimization problem,
see [19] for more details. More recently, by using proximal regularization tech-
niques and partially parallel splitting schemes, Wang et al.[28] developed a
proximal partially parallel splitting method for a multi-objective convex mini-
mization problem. For an extensive review on PPA, one may refer [11,15] and
the references therein. In what follows, we simply mention a few works closely
related to the development of our proposed method. He et al.[15] investigated a
customized application of the classical PPA for the convex programming with
linear constraints, where some image processing problems were tested to show
the efficiency of their method. Cai et al.[5] also proposed a R-PPA for solving
(1) and analyzed its global convergence with a worst-case linear convergence
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rate. Based on the results of [5,11,15], Ma and Ni [23] recently revisited the ap-
plication of PPA for solving the basis pursuit and matrix completion problem.
Our new proposed Parameterized PPA (P-PPA) can be actually regarded as
more general extensions of the algorithms developed in [15] and [23] which
does not make use of the separable structure of the objective function in (1).

Major contributions of this paper are summarized in the following. Firstly,
the proximal matrix in our proposed P-PPA is more general and flexible than
those in the previous work [15,23], due to more induced parameters to take
consideration of the problem structure instead of a unique objective function.
Secondly, by properly choosing the algorithm parameters, the new P-PPA
could significantly outperform some state-of-the-art methods, such as ADMM
[1] and R-PPA [11], for solving the separable convex optimization, especially
when the problem size is large and high accurate solutions are required.

The remaining parts are organized as follows. In Section 2, we characterize
the solution of the problem (1) as the solution of proper variational inequalities
and review the unified framework of PPA. In Section 3, we derive the new P-
PPA and discuss its global convergence and worst-case convergence rate in
an ergodic sense. At the end of Section 3, we still present a P-PPA with a
relaxation step. Some preliminary numerical experiments are performed in
Section 4 for comparing our proposed methods with two benchmark methods.
We finally conclude the paper in Section 5.

2 Preliminaries

In this section, we first introduce some necessary notations used throughout
the paper. Then, we characterize the solution of the problem (1) by the aid
of an equivalent variational inequality. Similar approaches have been widely
used in the literature, e.g. [15,18].

For the sake of convenience, let R, Rn and Rn×m denote the set of real
numbers, the set of n dimensional real column vectors and the set of n×m real
matrices, respectively. For any x, y ∈ Rn, 〈x, y〉 = xT y denotes the standard
inner product in Rn and ‖x‖ =

√
〈x, x〉 is the Euclidean norm. Given any

symmetric positive definite matrix G ∈ Rn×n, the weighted norm ‖x‖G =√
〈x,Gx〉. In addition, we use I and 0 to stand for the identity matrix and

the zero vector with proper dimension, respectively.

The following basic lemma given in [18] will be used as a tool for analyzing
the primal-dual solution pair of the problem (1).

Lemma 1 Let ϕ : Rm → R and ψ : Rm → R be two convex functions defined
on a closed convex set Ω ⊂ Rm and ψ is differentiable. Suppose the solution
set Ω∗ = argmin

x∈Ω
{ϕ(x) + ψ(x)} is nonempty. Then we have

x∗ ∈ Ω∗ if and only if x∗ ∈ Ω, ϕ(x)−ϕ(x∗)+〈x− x∗,∇ψ(x∗)〉 ≥ 0, ∀x ∈ Ω.
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Now, given any τ ∈ R\{0}, that is τ 6= 0, a Lagrangian function of problem
(1) can be written as

L(x, y, λ) = f(x) + g(y)− 〈λ, τ(Ax +By − c)〉 , (2)

where λ ∈ Rl is the Lagrange multiplier. Then, for any primal-dual solution
pair (x∗, y∗, λ∗) of (1), we have

L(x∗, y∗, λ) ≤ L(x∗, y∗, λ∗) ≤ L(x, y, λ∗),

which is equivalent to




x∗ = argmin{f(x)− 〈λ, τAx〉|x ∈ X},
y∗ = argmin{g(y)− 〈λ, τBy〉| y ∈ Y},
λ∗ = argmax{− 〈λ, τ(Ax +By − c)〉 | λ ∈ Rl}.

By applying Lemma 1, the optimality conditions of the above equations are



x∗ ∈ X , f(x)− f(x∗) +

〈
x− x∗,−τATλ∗

〉
≥ 0, x ∈ X ,

y∗ ∈ Y, g(y)− g(y∗) +
〈
y − y∗,−τBTλ∗

〉
≥ 0, y ∈ Y,

λ∗ ∈ Rl, 〈λ− λ∗, τ(Ax∗ +By∗ − c)〉 ≥ 0, λ ∈ Rl,
(3)

which can be rewritten as a variational inequality (VI)

VI(φ,J ,M) : φ(u)− φ(u∗) + 〈w − w∗,J (w∗)〉 ≥ 0, ∀w ∈ M, (4)

where
φ(u) = f(x) + g(y), M = X × Y ×Rl,

u =

(
x
y

)
, w =



x
y
λ


 and J (w) = τ




−ATλ
−BTλ

Ax+By − c


 .

Clearly, the solution set of VI(φ,J ,M), denoted by M∗, is nonempty by
the assumption of nonempty solution set of the problem (1). Since the affine
mapping J is skew-symmetric, we can obtain

〈w − ŵ,J (w)〉 = 〈w − ŵ,J (ŵ)〉 , ∀ w, ŵ ∈ M. (5)

Hence, the variational inequality (4) is also rewritten as

φ(u)− φ(u∗) + 〈w − w∗,J (w)〉 ≥ 0, ∀w ∈ M. (6)

When the proximal point algorithms are applied to solve the variational in-
equality (6) or equivalently (4), they often take the following unified approach:
at the k-th iteration, find iterate wk+1 satisfying

φ(u)−φ(uk+1)+
〈
w − wk+1,J (wk+1) +G

(
wk+1 − wk

)〉
≥ 0, ∀w ∈ M, (7)

where the above matrix G ∈ R(m+n+l)×(m+n+l) called proximal matrix is a
positive definite, and

uk+1 =

(
xk+1

yk+1

)
, wk+1 =



xk+1

yk+1

λk+1


 , J (wk+1) = τ




−ATλk+1

−BTλk+1

Axk+1 +Byk+1 − c


 .

Obviously, different choices of G would result in different proximal point algo-
rithms. We would provide a new choice of G for our proposed P-PPA.
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3 Main results

In this section, we first develop the P-PPA for solving (1) in detail and discuss
its convergence properties. Then, it is straightforward to extend the method
to the case with a relaxation step.

3.1 Development of P-PPA with convergence

Mainly motivated by the proximal matrix of PPA in Eq.(2.5) of [15] and
Eq.(3.1) of [23], we would design the matrix G in (7) having the following
structure:

G =




(
σ + ε2−1

s

)
ATA −εAT

(
ρ+ τ2−1

s

)
BTB −τBT

−εA −τB sI


 , (8)

where (σ, ρ, s, τ, ε) are parameters satisfying

s > 0, σ >
1

s
, (σs− 1)(ρs− 1)− τ2ε2 > 0, ε ∈ R and τ ∈ R\{0}. (9)

For convenience, let us define

σ̄ = σ +
τ2 − 1

s
and ρ̄ = ρ+

τ2 − 1

s
. (10)

Then, from later analysis we can see that 1/s would play a role of penalty
parameter for the equality constraint of (1), while σ̄ and ρ̄ can be regarded as
the proximal parameters as those used in the customized PPA [15].

The following lemma ensures that under proper conditions of the parame-
ters, G is a positive definite matrix.

Lemma 2 Suppose that the matrices A and B have full column rank. For any
(σ, ρ, s, τ, ε) satisfying (9), the matrix G defined in (8) is positive definite.

Proof Clearly, the matrix G is symmetric and can be decomposed into

G = DTG0D,

where

D =



A
B

I


 and G0 =




(
σ + ε2−1

s

)
I −εI(

ρ+ τ2−1
s

)
I −τI

−εI −τI sI


 . (11)

By the full column rank assumption of A and B, the matrix G is positive
definite if and only if G0 is positive definite. Noting that



I ε

s
I

I τ
s
I
I


 G0



I ε

s
I

I τ
s
I
I



T

=



(
σ − 1

s

)
I − τǫ

s
I

− τǫ
s
I

(
ρ− 1

s

)
I
sI


 =: G̃0.
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Hence, G0 is positive definite if and only if G̃0 is positive definite, which is
guaranteed if condition (9) holds. Therefore, the proof is completed. ♦

In what follows, we develop our P-PPA in detail. Substituting the matrix
G into (7), we have λk+1 ∈ Rl and

〈λ− λk+1, Rλ〉 ≥ 0, ∀λ ∈ Rl,

where

Rλ = τ
(
Axk+1 +Byk+1 − c

)
− εA

(
xk+1 − xk

)
− τB

(
yk+1 − yk

)

+s
(
λk+1 − λk

)
.

Hence, we have Rλ = 0 which leads to

λk+1 = λk −
1

s

[
(τ − ε)Axk+1 + εAxk + τByk − τc

]
. (12)

Meanwhile, by (7) and (12), we also have

xk+1 ∈ X , f(x)− f(xk+1) +
〈
x− xk+1, Rx

〉
≥ 0, ∀x ∈ X , (13)

where

Rx = −τATλk+1 − εAT
(
λk+1 − λk

)
+

(
σ +

ε2 − 1

s

)
ATA

(
xk+1 − xk

)

= −(τ + ε)AT

{
λk −

1

s

[
(τ − ε)Axk+1 + εAxk + τByk − τc

]}

+εATλk +

(
σ +

ε2 − 1

s

)
ATA

(
xk+1 − xk

)

= −τAT λ̄k + σ̄ATA
(
xk+1 − xk

)

with σ̄ being defined in (10) and

λ̄k = λk −
τ + ε

s

(
Axk +Byk − c

)
. (14)

Notice that by (9), we get σ̄ = (σs+ τ2 − 1)/s > 0. Hence, by Lemma 1, xk+1

is the solution of the following optimization problem

xk+1 = argmin
x∈X

{
f(x) +

σ̄

2

∥∥A(x − xk)
∥∥2 −

〈
Ax, τλ̄k

〉}

= argmin
x∈X

{
f(x) +

σ̄

2

∥∥∥A(x − xk)−
τ

σ̄
λ̄k

∥∥∥
2
}
. (15)

Similarly, we can also derive from (7) and (12) that

yk+1 ∈ Y, g(y)− g(yk+1) +
〈
y − yk+1, Ry

〉
≥ 0, ∀y ∈ Y, (16)
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where

Ry = −τBTλk+1 − τBT
(
λk+1 − λk

)
+

(
ρ+

τ2 − 1

s

)
BTB

(
yk+1 − yk

)

= −2τBT

{
λk −

1

s

[
(τ − ε)Axk+1 + εAxk + τByk − τc

]}

+τBTλk +

(
ρ+

τ2 − 1

s

)
BTB

(
yk+1 − yk

)

= −τBT λ̄k+
1

2 + ρ̄BTB
(
yk+1 − yk

)
,

and

λ̄k+
1

2 = λk −
2

s

[
(τ − ε)Axk+1 + εAxk + τByk − τc

]
. (17)

Furthermore, it follows from (14) and (17) that

λ̄k+
1

2 = λ̄k +
τ + ε

s

(
Axk +Byk − c

)

−
2

s

[
(τ − ε)Axk+1 + εAxk + τByk − τc

]

= λ̄k −
τ − ε

s

[
A(2xk+1 − xk) +Byk − c

]
. (18)

Hence, by Lemma 1, yk+1 is the solution of the following optimization problem

yk+1 = argmin
y∈Y

{
g(y) +

ρ̄

2

∥∥B(y − yk)
∥∥2 −

〈
By, τλ̄k+

1

2

〉}

= argmin
y∈Y

{
g(y) +

ρ̄

2

∥∥∥∥B(y − yk)−
τ

ρ̄
λ̄k+

1

2

∥∥∥∥
2
}
. (19)

In addition, it follows from (12) and (14) that

λ̄k+1 = λk+1 −
τ + ε

s

(
Axk+1 +Byk+1 − c

)

= λk −
1

s

[
(τ − ε)Axk+1 + εAxk + τByk − τc

]

−
τ + ε

s

(
Axk+1 +Byk+1 − c

)

= λ̄k +
τ + ε

s

(
Axk +Byk − c

)
−
τ + ε

s

(
Axk+1 +Byk+1 − c

)

−
1

s

[
(τ − ε)Axk+1 + εAxk + τByk − τc

]

= λ̄k −
τ

s
(Axk+1 +Byk+1 − c)

−
1

s

[
τA(xk+1 − xk) + εB(yk+1 − yk)

]
. (20)

Summarizing all the above discussions, we propose P-PPA as the following
algorithm:
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Algorithm 1 (P-PPA for solving Problem (1))

1 Choose parameters (σ, ρ, s, τ, ε) satisfying (9);
2 Initialize (x0, y0, λ0) ∈ Rm ×Rn ×Rl and r0 = Ax0 +By0 − c;
3 λ̄0 = λ0 − τ+ε

s
r0;

4 For k = 0, 1, · · · , do

5 xk+1 = argmin
x∈X

{
f(x) + σ̄

2

∥∥A(x− xk)− τ
σ̄
λ̄k

∥∥2
}
;

6 λ̄k+
1

2 = λ̄k − τ−ε
s

[
A(2xk+1 − xk) +Byk − c

]
;

7 yk+1 = argmin
y∈Y

{
g(y) + ρ̄

2

∥∥∥B(y − yk)− τ
ρ̄
λ̄k+

1

2

∥∥∥
2
}
;

8 rk+1 = Axk+1 +Byk+1 − c;
9 λ̄k+1 = λ̄k − τ

s
rk+1 − 1

s

[
τA(xk+1 − xk) + εB(yk+1 − yk)

]
.

For the above P-PPA, we have the following remarks.

Remark 1 By taking τ = ε = 1, the matrix G in (8) would become

G =



σATA −AT

ρBTB −BT

−A −B sI


 ,

where the parameters (σ, ρ, s) satisfy

s > 0, σ >
1

s
, (σs− 1)(ρs− 1) > 1.

In such case, Algorithm 1 would be reduced to





Let λ̄0 = λ0 − 2
s

(
Ax0 +By0 − c

)
;

For k = 0, 1, · · · , do

xk+1 = argmin
x∈X

{
f(x) + σ̄

2

∥∥A(x− xk)− τ
σ̄
λ̄k

∥∥2
}
;

yk+1 = argmin
y∈Y

{
g(y) + ρ̄

2

∥∥∥B(y − yk)− τ
ρ̄
λ̄k

∥∥∥
2
}
;

λ̄k+1 = λ̄k − 1
s

[
A(2xk+1 − xk) +B(2yk+1 − yk)− c

]
.

This algorithm can be considered as a direct extension of the customized PPA
[15], which only considers problem with one block structure, to solve the two-
block structured problem (1).

Remark 2 The freedom of choosing the parameters (σ, ρ, s, τ, ε) would allow
P-PPA to have more flexibility to select the proximal parameters σ̄ and ρ̄.
However, note that they are proportional to the parameters (σ, τ, 1/s) and
(ρ, τ, 1/s), respectively. As commented in the final part of [17], if they are too
large, then slow convergence will occur in terms of solving the subproblems,
which can significantly affect the overall efficiency of the algorithm.
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Next, we discuss the convergence properties of P-PPA in a more general
proximal point setting given in (7).

Lemma 3 The sequence {wk+1} generated by Algorithm 1 satisfies

‖wk+1 − w∗‖2G ≤ ‖wk − w∗‖2G − ‖wk+1 − wk‖2G, ∀w∗ ∈ M∗. (21)

Proof Setting w = w∗ in (7), we have

φ(u∗)− φ(uk+1) +
〈
w∗ − wk+1,J (wk+1) +G

(
wk+1 − wk

)〉
≥ 0,

which, by (4)-(5), implies

〈
w∗ − wk+1, G

(
wk+1 − wk

)〉
≥ 0.

By the above inequality, we obtain

‖wk − w∗‖2G = ‖wk − wk+1 + wk+1 − w∗‖2G
≥ ‖wk − wk+1‖2G + ‖wk+1 − w∗‖2G,

which immediately gives the inequality (21). ♦

Based on the above lemma, we have the following global convergence the-
orem.

Theorem 1 Suppose that the condition (9) holds and the sequence {wk+1} is
generated by Algorithm 1. Then, there exists a w∞ ∈ M∗ such that

lim
k→∞

wk = w∞. (22)

Proof Since condition (9) holds, we have by Lemma 2 that G is positive defi-
nite. Then, it follows from (21) that {wk} is bounded and

lim
k→∞

‖wk − wk+1‖ = 0. (23)

Let w∞ be any accumulation point of {wk}. By taking a subsequence of wk

in (7) if necessary, it follows from (23) that

φ(u)− φ(u∞) + 〈w − w∞,J (w∞)〉 ≥ 0, ∀w ∈ M.

Hence, w∞ ∈ M∗. So, by (21) again, we have

‖wk − w∞‖G ≤ ‖wj − w∞‖G for all k ≥ j.

Then, it follows from w∞ being an accumulation point that (22) holds. ♦

Now, we establish the worst-case O(1/t) ergodic convergence rate for solv-
ing the variational inequality (6). Let

wt :=
1

t+ 1

t∑

k=0

wk+1 and ut :=
1

t+ 1

t∑

k=0

uk+1. (24)
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Theorem 2 Suppose that the condition (9) holds and the sequence {wk+1} is
generated by Algorithm 1. Then, we have

φ(ut)− φ(u) + 〈wt − w,J (w)〉 ≤
1

2(t+ 1)

∥∥w0 − w
∥∥2

G
, ∀ w ∈ M. (25)

Proof By (7) and the property (5), it holds that

φ(u)− φ(uk+1) +
〈
w − wk+1,J (w)

〉
≥

〈
wk+1 − w,G(wk+1 − wk)

〉
, ∀ w ∈ M.

(26)
Then, applying the identity

2〈a− b,G(a− c)〉 = ‖a− c‖2G + ‖a− b‖2G − ‖c− b‖2G

with

a = wk+1, b = w, c = wk,

we can obtain

〈
wk+1 − w,G(wk+1 − wk)

〉
= 1

2

(∥∥wk+1 − wk
∥∥2

G
+
∥∥wk+1 − w

∥∥2

G
−
∥∥wk − w

∥∥2

G

)

≥ 1
2

(∥∥wk+1 − w
∥∥2

G
−
∥∥wk − w

∥∥2

G

)
,

which together with (26) imply

φ(u)− φ(uk+1) +
〈
w − wk+1,J (w)

〉
+

1

2

∥∥wk − w
∥∥2

G
≥

1

2

∥∥wk+1 − w
∥∥2

G
.

Summing the above inequality over k = 0, 1, · · · , t, we get

(t+1)φ(u)−
t∑

k=0

φ(uk+1)+

〈
(t+ 1)w −

t∑

k=0

wk+1,J (w)

〉
+

1

2

∥∥w0 − w
∥∥2

G
≥ 0,

which by the definition of wt in (24) gives

1

t+ 1

t∑

k=0

φ(uk+1)− φ(u) + 〈wt − w,J (w)〉 ≤
1

2(t+ 1)

∥∥w0 − w
∥∥2

G
. (27)

By the convexity of the function φ(u) and the definition of ut in (24), we have

φ(ut) ≤
1

t+ 1

t∑

k=0

φ(uk+1).

Then, (25) is true by substituting the above inequality into (27). ♦
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3.2 P-PPA with a relaxation step

Applying a relaxation step for PPA is a standard technique to accelerate its
convergence [11,12,15]. Combining the PPA approach (7) together with a re-
laxation step would give the following procedure: at the k-th iteration, find
w̃k+1 satisfying

φ(u)−φ(ũk+1)+
〈
w − w̃k+1,J (w̃k+1) +G

(
w̃k+1 − wk

)〉
≥ 0, ∀w ∈ M, (28)

and then let

wk+1 = wk + γ(w̃k+1 − wk),

where γ ∈ (0, 2) is the relaxation parameter. When γ = 1, the above relaxed
PPA will be reduced to the standard PPA. For the relaxed PPA, analogous to
(21), it is not difficult (for details, see [11,12]) to show

‖wk+1 − w∗‖2G ≤ ‖wk − w∗‖2G − γ(γ − 2)‖w̃k+1 − wk‖2G, ∀w∗ ∈ M∗. (29)

Then, based on (29), it is straightforward to have global convergence and
convergence rate analogous to Theorem 1 and Theorem 2. More precisely,
combining Algorithm 1 with a relaxation step would give the following Relaxed
P-PPA (RP-PPA).

Algorithm 2 (RP-PPA for solving Problem (1))

1 Choose parameters (σ, ρ, s, τ, ε) satisfying (9) and γ ∈ (0, 2);
2 Initialize (x0, y0, λ0) ∈ Rm ×Rn ×Rl and r0 = Ax0 +By0 − c;
3 λ̄0 = λ0 − τ+ε

s
r0;

4 For k = 0, 1, · · · , do

5 x̃k = argmin
x∈X

{
f(x) + σ̄

2

∥∥A(x− xk)− τ
σ̄
λ̄k

∥∥2
}
;

6 λ̄k+
1

2 = λ̄k − τ−ε
s

[
A(2x̃k − xk) +Byk − c

]
;

7 ỹk = argmin
y∈Y

{
g(y) + ρ̄

2

∥∥∥B(y − yk)− τ
ρ̄
λ̄k+

1

2

∥∥∥
2
}
;

8 rk+1 = Ax̃k +Bỹk − c; ∆xk = x̃k − xk; ∆yk = ỹk − yk;
9 λ̃k = λ̄k − τ

s
rk+1 − 1

s

[
τA∆xk + εB∆yk

]
;

10 Relaxation step: compute

(
xk+1

yk+1

)
=

(
xk

yk

)
+ γ

(
∆xk

∆yk

)
,

and

λ̄k+1 = λ̄k + γ(λ̃k − λ̄k)−
(1− γ)(τ + ε)

s
(A∆xk +B∆yk).
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4 Numerical experiments

In this section, we would perform some numerical experiments for solving the
following lasso model problem arising from statistical learning [27]:

min
x∈Rn

ν‖x‖1 +
1

2
‖Dx− b‖2, (30)

where ‖x‖1 =
∑n

i=1 |xi|; ν > 0 is a scalar regularization parameter; b ∈ Rl

is a response vector; D ∈ Rl×n is a design matrix with l and n denoting the
number of data points and the number of features, respectively. In typical
applications, there are usually many more features than training examples [1],
that is l ≪ n, and the goal is to find a parsimonious model for the data. We
refer the readers to [3,27,1,13] for more backgrounds on the lasso model. In
the numerical experiments, all algorithms are coded in MATLAB 7.10(R2010a)
and run on a PC with Intel Core i5 processor (3.3GHz) with 4 GB memory.

By introducing an auxiliary variable y ∈ Rn, the problem (30) is obviously
equivalent to

min ν‖x‖1 +
1
2‖Dy − b‖2

s.t. x− y = 0,
x ∈ Rn, y ∈ Rn,

(31)

which is a special case of (1) with

f(x) = ν‖x‖1, g(y) =
1

2
‖Dy − b‖2, A = I, B = −I, c = 0.

Applying Algorithm 1 to solve (31), we have

xk+1 = arg min
x∈Rn

{
ν‖x‖1 +

σ̄

2

∥∥∥x− xk −
τ

σ̄
λ̄k

∥∥∥
2
}
,

for which xk+1 can be explicitly obtained by a soft shrinkage operator [8] and
σ̄ is defined in (10). In addition, we can deduce that

yk+1 =
[
DTD + ρ̄I

]−1
[
DT b + ρ̄

(
yk −

τ

ρ̄
λ̄k+

1

2

)]
,

where ρ̄ is defined in (10). Notice that the matrix DTD+ ρ̄I is positive definite,
since ρ̄ = (ρs + τ2 − 1)/s > 0. Though it maybe quite time consuming to
compute (DTD + ρ̄I)−1 and DT b when the problem scale is large, they only
need to be computed once before the iteration starts. To save computation, we
can actually compute once and cache the Cholesky Factorization of the much
smaller matrix DDT /ρ̄+ I (note l ≪ n), which takes about (l2n+ l3/3) flops,
including the cost of forming DDT and the Cholesky Factorization. Then, all
the subsequent y-updates can be calculated by the Sherman-Morrison inversion
matrix formula together with forward-backward substitutions.

The problem data are generated by the following way. Each entry of the
feature matrix D is draw from the standard normal distribution N (0, 1) and
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then each of its column is normalized. A random sparse vector xtrue ∈ Rn with
100 nonzero entries is also drawn from an N (0, 1) distribution. The vector b
is computed via b = Dxtrue + ǫ, where ǫ ∼ N (0, 10−3I), and the regulariza-
tion parameter is set as ν = 0.12νmax with νmax = ‖DT b‖∞. The following
stopping criterion is used for all the comparison algorithms

IRE(k) :=

∥∥xk − yk
∥∥

max{‖xk‖ , ‖yk‖}
≤ Tol and

φ(uk)− φ∗

φ∗
≤ 1.0× 10−8,

where Tol is a given tolerance, φ(uk) = f(xk) + g(yk), and φ∗ is the ap-
proximate optimal objective function value obtained by running P-PPA after
2000 iterations. Then, all the comparison algorithms are set to have the max-
imum 2000 number of iterations and they all use the same starting point
(x0, y0, λ0) = (0,0,0).

4.1 Effects of parameters (σ, ρ, s, τ, ε)

The aim of this subsection is to investigate how the five parameters (σ, ρ, s, τ, ε)
would influence the performance of P-PPA. For this purpose, we first fix
the free parameters (τ, ε) as (3, 1.5) and then change other distinctively con-
strained parameters (σ, ρ, s) to investigate their effects on P-PPA.

Table 1 presents the numerical results of Algorithm 1 (i.e. P-PPA) with
different parameters for solving the test problem (31) with dimension (l, n) =
(1800, 4000). For this set of tests, we fix the tolerance Tol = 1.0× 10−6. And
in all the numerical Tables, “Iter”, “CPU” and “DRN” denote the iteration
numbers, the CPU time in seconds and the dual residual norm ‖yk − yk−1‖ ,
respectively. We can observe from Table 1 that:

– For the parameters (σ, ρ, s), the reported results in each column of IRE,
DRN and φ(uk) are nearly the same when fixed any two parameters with
one parameter changing.

– With the increase of the parameter σ or ρ, both the iteration number and
the CPU time tend to increase(denoted by ↓);

– With the increase of the parameter s, both the iteration number and the
CPU time decrease firstly and then increase(denoted by ↑

↓).

These changing trends identify with Remark 2. Reported results of Table 1
indicate that the choice of the parameters (σ, ρ, s) could have a great effect on
the performance of P-PPA, the value in the place of the arrow is better than
others in each subtable, and it seems that setting (σ, ρ, s) = (0.8, 6, 3) would
be a reasonable choice for solving the test problem (31).

Remark 3 Noting from Table 1 that if any four parameters are fixed, then by
(9) the remaining one is clearly subjected to a given domain. For instance, in
the top subtable of Table 1 we have from (9) that σ > 37.25

51 ≈ 0.73. Therefore,
we can randomly choose some values in such region to do experiments to find
out which one gives relatively better performance.
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Parameters Iter CPU IRE DRN φ(uk)
σ(ρ = 6, s = 3)

0.8 134↓ 3.60↓ 9.8125e-7 1.0932e-5 19.2402
1 137 3.70 9.3824e-7 1.0508e-5 19.2402
2 149 4.00 9.3133e-7 1.0673e-5 19.2402
4 174 4.49 8.5235e-7 1.0120e-5 19.2402
6 199 5.08 7.8227e-7 9.5316e-6 19.2402
8 223 5.55 7.5285e-7 9.3548e-6 19.2402
10 248 6.25 6.9449e-7 8.7643e-6 19.2402

ρ(σ = 6, s = 3)
0.8 137↓ 3.61↓ 6.2401e-7 8.0288e-6 19.2402
1 140 3.70 6.0813e-7 7.8031e-6 19.2402
2 152 3.94 6.5624e-7 8.3108e-6 19.2402
4 176 4.56 7.1727e-7 8.8891e-6 19.2402
7 210 5.22 8.2280e-7 9.9542e-6 19.2402
8 222 5.47 8.2070e-7 9.8666e-6 19.2402
11 255 6.22 8.9283e-7 1.0567e-5 19.2402

s(σ = 6, ρ = 6)
1 263 6.48 9.7027e-7 1.4122e-5 19.2402
2 211 5.25 9.8606e-7 1.3624e-5 19.2402
5 197 4.99 4.3585e-7 3.8039e-6 19.2402
7 192 4.84 3.9519e-7 2.4871e-6 19.2402

11 181↑
↓ 4.67↑

↓ 9.9008e-7 2.9591e-6 19.2402

12 195 4.86 8.9998e-7 2.8168e-6 19.2402
14 221 5.47 9.6407e-7 3.3572e-6 19.2402
16 255 6.39 8.7023e-7 2.4315e-6 19.2402
18 282 6.92 8.5695e-7 2.7583e-6 19.2402

Table 1: Results of problem (31) by P-PPA with different parameters (σ, ρ, s).

Remark 4 In a similar way as mentioned in Remark 3, we have

τ2 <
(σs− 1)(ρs− 1)

ε2
and ε2 <

(σs− 1)(ρs− 1)

τ2
.

Then, by testing some values of the parameter τ(ε) and observing which one
performs approximately better, our tuned results are (τ, ε) = (3, 1.5). Hence,
for further comparative experiments with some state-of-the-art methods, we
would use the tuned results (0.8, 6, 3, 3, 1.5) as the default parameter setting
for both P-PPA and RP-PPA.

4.2 Comparative experiments

Now, we would like to compare P-PPA and RP-PPA with other two popular
methods for solving the problem (31): ADMM1 [1] and R-PPA [11].

1 Available at http://web.stanford.edu/∼boyd/papers/admm/.

http://web.stanford.edu/~boyd/papers/admm/
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P-PPA(l, n) Iter CPU IRE φ(uk)
(1000,4000) 313 4.01 9.7448e-11 19.3556
(1800,4000) 265 6.27 9.5478e-11 19.2402
(1000,10000) 387 11.25 9.6822e-11 19.0072
(1800,10000) 260 13.16 9.6308e-11 20.0529
(1000,16000) 279 11.71 9.8237e-11 18.6698
(1600,16000) 247 17.24 9.5727e-11 19.7810
(1000,20000) 316 16.43 9.2613e-11 19.9294
(1800,20000) 196 19.80 8.9340e-11 19.2038
(1000,24000) 369 22.62 9.8638e-11 18.5250
(2000,26000) 212 29.26 9.4504e-11 19.0005

RP-PPA(l, n) Iter CPU IRE φ(uk)
(1000,4000) 260 3.28 9.3533e-11 19.3556
(1800,4000) 219 5.20 9.7552e-11 19.2402
(1000,10000) 322 9.45 9.4616e-11 19.0072
(1800,10000) 216 11.09 9.2376e-11 20.0529
(1000,16000) 232 10.00 9.2286e-11 18.6698
(1600,16000) 206 14.49 9.5818e-11 19.7810
(1000,20000) 259 13.70 9.3551e-11 19.9294
(1800,20000) 173 17.58 9.1322e-11 19.2038
(1000,24000) 302 18.64 9.6840e-11 18.5250
(2000,26000) 174 24.40 9.5930e-11 19.0005

R-PPA(l, n) Iter CPU IRE φ(uk)
(1000,4000) 284 3.67 9.7350e-11 19.3556
(1800,4000) 238 5.68 9.3094e-11 19.2402
(1000,10000) 371 10.85 9.9245e-11 19.0072
(1800,10000) 243 12.27 9.5912e-11 20.0529
(1000,16000) 336 13.99 9.8769e-11 18.6698
(1600,16000) 256 17.74 9.5437e-11 19.7810
(1000,20000) 339 17.47 9.3942e-11 19.9294
(1800,20000) 236 22.80 9.9142e-11 19.2038
(1000,24000) 374 22.92 9.7664e-11 18.5250
(2000,26000) 226 31.13 9.7351e-11 19.0005

ADMM(l, n) Iter CPU IRE φ(uk)
(1000,4000) 100 1.36 9.2692e-11 19.3556
(1800,4000) 71 2.16 9.2988e-11 19.2402
(1000,10000) 189 5.62 9.1517e-11 19.0072
(1800,10000) 126 6.80 8.9039e-11 20.0529
(1000,16000) 285 11.95 9.8136e-11 18.6698
(1600,16000) 193 13.69 9.2166e-11 19.7810
(1000,20000) 351 18.04 9.1173e-11 19.9294
(1800,20000) 208 20.33 9.9380e-11 19.2038
(1000,24000) 426 26.06 9.5935e-11 18.5250
(2000,26000) 236 32.28 9.7005e-11 19.0005
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Table 2: Comparative results of problem (31) with different dimensions2.

Table 2 reports the numerical results of all comparison methods for solving
the problem (31) with different dimensions (l, n). Actually, ADMM uses the
downloaded codes but with penalty parameter 1 and a widely used step-length
1.618 when updating the lagrangian multipliers. For R-PPA, the penalty pa-
rameter is set as 10, which is reasonably good for this method. Both RP-
PPA and R-PPA use the same relaxation factor γ = 1.2. The tolerance
Tol = 1.0×10−10 is used for all the testing problems in Table 2. The numerical
results of solving the test problem with fixed dimensions (l, n) = (1800, 20000),
but under different accurate tolerances, are presented in Table 3. Moreover,
the comparative convergence curves of the objective function φ(uk), the resid-
ual error IRE(k) and the dual residual norm ‖yk − yk−1‖ against the number
of iterations are shown in Fig. 1.

Tol = 10−5 P-PPA RP-PPA R-PPA ADMM
Iter 100 86 102 88
CPU 10.53 9.31 10.68 9.54
IRE 9.9112e-6 9.0542e-6 9.5777e-6 9.2727e-6
φ(uk) 19.2038 19.2038 19.2038 19.2037

Tol = 10−8 P-PPA RP-PPA R-PPA ADMM
Iter 159 137 182 158
CPU 16.80 14.27 18.64 16.65
IRE 8.9178e-9 9.7009e-9 9.5103e-9 9.3515e-9
φ(uk) 19.2038 19.2038 19.2038 19.2038

Tol = 10−11 P-PPA RP-PPA R-PPA ADMM
Iter 214 190 264 234
CPU 21.72 18.48 27.03 24.08
IRE 9.2468e-12 9.8367e-12 9.5013e-12 9.5918e-12
φ(uk) 19.2038 19.2038 19.2038 19.2038

Tol = 10−14 P-PPA RP-PPA R-PPA ADMM
Iter 274 244 347 2000
CPU 26.79 24.18 32.24 192.33
IRE 9.9348e-15 8.9322e-15 9.7695e-15 1.3963e-14
φ(uk) 19.2038 19.2038 19.2038 19.2038

Table 3: Comparative results of problem (31) under different tolerance errors3.

We can observe from Tables 2-3 that both P-PPA and RP-PPA perform
better than ADMM and R-PPA for the relatively large size problems in terms
of both the number of iterations and the CPU time. Another outstanding
observation is that RP-PPA can clearly shorten the number of iterations and
the CPU time of P-PPA. Besides, ADMM performs the worst for large-size

2 The bold value excluding that of P-PPA is of the smallest in each experiment with
respect to (l,n), and the bold value of P-PPA is smaller than that of R-PPA and ADMM.

3 The bold value of P-PPA is smaller than that of R-PPA and ADMM, and the bold value
of RP-PPA is of the smallest.
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Fig. 1 Comparative convergence curves of the objective function φ(uk), the residual IRE(k)
and the dual residual norm ‖yk − yk−1‖ against the number of iterations under tolerance

Tol = 1.0× 10−11.

problems, while it performs the best for small-size problems (e.g. n = 4000).
Both Table 3 and Fig. 1 illustrate that as the tolerance becomes smaller, P-
PPA and RP-PPA could perform significantly better than ADMM and R-PPA.
In addition, note from Table 3 that ADMM fails to solve the problem with
dimensions (l, n) = (1800, 20000) in 2000 iterations to achieve the accuracy
Tol = 1.0 × 10−14. Reported results show that our proposed methods are
efficient when properly choosing the algorithmic parameters.

Remark 5 Although the tuned values of the parameters in the proposed al-
gorithms are not proved theoretically to be the best, the reported numerical
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results of comparative experiments are sufficient to show that such a choice
can make our algorithms outperform the other two algorithms.

5 Conclusion and discussion

By introducing several parameters to the proximal matrix in the framework
of the traditional proximal point algorithm, we propose a new Parameterized
Proximal Point Algorithm (P-PPA) for solving the separable convex minimiza-
tion problem. Under certain conditions on these parameters, we show that the
P-PPA is globally convergent and would maintain a worst-case O(1/t) ergodic
convergence rate. By properly choosing the parameters, the numerical experi-
ments of solving the classical lasso problem in statistical learning indicate our
P-PPA and the Relaxed P-PPA (RP-PPA) could perform significantly better
than the other two benchmark methods: ADMM and R-PPA, especially for
solving large scale problems and high accurate solutions are required.

For the case that the subproblems are not easy to solve, inexact ADMMs[14]
are recently developed for solving the general separable convex optimization
problems with a linear constraint and with an objective including smooth plus
nonsmooth terms, which is particularly useful when the ADMM’s subprob-
lems do not have closed solutions or when the solution of the subproblem is
expensive. Also, there are other works in references [16,26] which discuss how
to solve the subproblems inexactly.

Finally, observe that the P-PPA and RP-PPA can be naturally extended to
to solve the problem (1) with inequality constraints or with matrix variables
such as

min f(X) + g(Y )
s.t. AX +BY = C,

X ∈ X , Y ∈ Y,
(32)

where both f and g are proper closed convex functions over the matrix vari-
ables X and Y , A and B are coefficient matrices, X and Y are certain closed
convex sets. The model problem (32) also arises very often in many important
applications in data analysis [4,20], for example, the robust principal compo-
nent analysis in image processing, etc. One of the following research tasks could
be to extend the P-PPA to solve the multi-block separable convex/nonconvex
programming problems.
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