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A spectrahedral representation of the first derivative

relaxation of the positive semidefinite cone

James Saunderson∗

September 5, 2018

Abstract

If X is an n × n symmetric matrix, then the directional derivative of X 7→ det(X) in the
direction I is the elementary symmetric polynomial of degree n−1 in the eigenvalues of X . This
is a polynomial in the entries of X with the property that it is hyperbolic with respect to the
direction I. The corresponding hyperbolicity cone is a relaxation of the positive semidefinite
(PSD) cone known as the first derivative relaxation (or Renegar derivative) of the PSD cone. A
spectrahedal cone is a convex cone that has a representation as the intersection of a subspace
with the cone of PSD matrices in some dimension. We show that the first derivative relaxation
of the PSD cone is a spectrahedral cone, and give an explicit spectrahedral description of size
(

n+1

2

)

− 1. The construction provides a new explicit example of a hyperbolicity cone that is also
a spectrahedron. This is consistent with the generalized Lax conjecture, which conjectures that
every hyperbolicity cone is a spectrahedron.

1 Introduction

1.1 Preliminaries

Hyperbolic polynomials, hyperbolicity cones, and spectrahedra A multivariate polyno-
mial p, homogeneous of degree d in n variables, is hyperbolic with respect to e ∈ R

n if p(e) 6= 0
and for all x, the univariate polynomial t 7→ p(x− te) has only real roots. Associated with such a
polynomial is a cone

Λ+(p, e) = {x ∈ R
n : all roots of t 7→ p(x− te) are non-negative}.

A foundational result of G̊arding [G̊ar59] is that Λ+(p, e) is actually a convex cone, called the closed
hyperbolicity cone associated with p and e.

For example p(x) =
∏n

i=1 xi is hyperbolic with respect to 1n, the vector of all ones, and the
corresponding closed hyperbolicity cone is the non-negative orthant, Rn

+. Similarly p(X) = det(X)
(where X is a symmetric n × n matrix), is hyperbolic with respect to the identity matrix I, and
the corresponding closed hyperbolicity cone is the positive semidefinite cone Sn

+.
If a polynomial p has a representation of the form

p(x) = det (
∑n

i=1Aixi) (1)
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for symmetric matrices A1, . . . , An, and there exists e ∈ R
n such that

∑n
i=1Aiei is positive definite,

we say that p has a definite determinantal representation. In this case p is hyperbolic with respect
to e. The associated closed hyperbolicity cone is

K =

{

x ∈ R
n :

n
∑

i=1

Aixi � 0

}

(2)

where we write X � 0 to indicate that X is positive semidefinite (and X ≻ 0 to indicate that X is
positive definite). Such convex cones are called spectrahedral cones. If the matrices A1, A2, . . . , An

are d× d we call (2) a spectrahedral representation of size d.

Derivative relaxations One way to produce new hyperbolic polynomials is to take directional
derivatives of hyperbolic polynomials in directions of hyperbolicity [ABG70, Section 3.10], a con-
struction emphasized in the context of optimization by Renegar [Ren06]. If p has degree d and is
hyperbolic with respect to e, then for k = 0, 1, . . . , d, the kth directional derivative in the direction
e, i.e.,

D(k)
e p(x) =

dk

dtk
p(x+ te)

∣

∣

∣

∣

t=0

,

is also hyperbolic with respect to e. Moreover

Λ+(D
(k)
e p, e) ⊇ Λ+(D

(k−1)
e p, e) ⊇ · · · ⊇ Λ+(p, e)

so the hyperbolicity cones of the directional derivatives form a sequence of relaxations of the original
hyperbolcity cone.

• Suppose p(x) =
∏n

i=1 xi and e = 1n. Then, for k = 0, 1, . . . , n,

D
(k)
1n

p(x) = k!en−k(x)

where en−k is the elementary symmetric polynomial of degree n − k in n variables. We use

the notation R
n,(k)
+ for Λ+(en−k, 1n), the closed hyperbolicity cone corresponding to en−k.

• Suppose p(X) = det(X) is the determinant restricted to n×n symmetric matrices, and e = In
is the n× n identity matrix. Then, for k = 0, 1, . . . , n,

D
(k)
In

p(X) = k!En−k(X) = k! en−k(λ(X))

where En−k(X) is the elementary symmetric polynomial of degree n − k in the eigenvalues

of X or, equivalently, the coefficient of tk in det(X + tIn). We use the notation S
n,(k)
+ for

Λ+(En−k, In), the closed hyperbolicity cone corresponding to En−k. We use the notation
λ(X) for the eigenvalues of a symmetric matrix X ordered so that |λ1(X)| ≥ |λ2(X)| ≥ · · · ≥
|λn(X)|. We use this order so that λi(X

2) = λi(X)2 for all i.

The focus of this paper is the cone S
n,(1)
+ , the hyperbolicity cone associated with En−1. In

particular, we consider whether S
n,(1)
+ can be expressed as a ‘slice’ of some higher dimensional

positive semidefinite cone. Such a description allows one to reformulate hyperbolic programs with

respect to S
n,(1)
+ (linear optimization over affine ‘slices’ of S

n,(1)
+ ) as semidefinite programs.
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Generalized Lax conjecture We have seen that every spectrahedral cone is a closed hyper-
bolicity cone. The generalized Lax conjecture asks whether the converse holds, i.e., whether every
closed hyperbolicity cone is also a spectrahedral cone. The original Lax conjecture, now a theorem
due to Helton and Vinnikov [HV07] (see also [LPR05]), states that if p is a trivariate polynomial,
homogeneous of degree d, and hyperbolic with respect to e ∈ R

3, then p has a definite determi-
nantal representation. While a direct generalization of this algebraic result does not hold in higher
dimensions [Brä11], the following geometric conjecture remains open.

Conjecture 1 (Generalized Lax Conjecture (geometric version)). Every closed hyperbolicity cone
is spectrahedral.

An equivalent algebraic formulation of this conjecture is as follows.

Conjecture 2 (Generalized Lax Conjecture (algebraic version)). If p is hyperbolic with respect to
e ∈ R

n, then there exists a polynomial q, hyperbolic with respect to e ∈ R
n, such that qp has a

definite determinantal representation and Λ+(q, e) ⊇ Λ+(p, e).

The algebraic version of the conjecture implies the geometric version because it implies the
existence of a multiplier q such that the hyperbolicity cone associated with qp is spectrahedral and
Λ+(qp, e) = Λ+(p, e) ∩Λ+(q, e) = Λ+(p, e). To see that the geometric version implies the algebraic
version requires more algebraic machinery, and is discussed, for instance, in [Vin12, Section 2].

1.2 Main result: a spectrahedral representation of S
n,(1)
+

In this paper, we show that S
n,(1)
+ , the first derivative relaxation of the positive semidefinite cone,

is spectrahedral. We give an explicit spectrahedral representation of S
n,(1)
+ (see Theorem 1 to

follow). Moreover, in Theorem 3 in Section 2 we find an explicit hyperbolic polynomial q such that

q(X)En−1(X) has a definite determinantal representation and Λ+(q, I) ⊇ S
n,(1)
+ .

Theorem 1. Let d =
(

n+1
2

)

− 1 and let B1, . . . , Bd be any basis for the d-dimensional space of real
symmetric n × n matrices with trace zero. If B(X) is the d × d symmetric matrix with i, j entry
equal to tr(BiXBj) then

S
n,(1)
+ = {X ∈ Sn : B(X) � 0}. (3)

Section 2 is devoted to the proof of this result. At this stage we make a few remarks about the
statement and some of its consequences.

• The spectrahedral representation of S
n,(1)
+ in Theorem 1 has size d =

(n+1
2

)

− 1 = 1
2(n +

2)(n−1). This is about half the size of the smallest previously known projected spectrahedral

representation of S
n,(1)
+ , i.e., representation as the image of a spectrahedral cone under a

linear map [SP15].

• A straightforward extension of this result shows that if p has a definite determinantal repre-
sentation and e is a direction of hyperbolicity for p, then the hyperbolicity cone associated
with the directional derivative Dep is spectrahedral. We discuss this in Section 3.1.

• It also follows from Theorem 1 that R
n,(2)
+ , the second derivative relaxation of the orthant

in the direction 1n, has a spectrahedral representation of size
(n
2

)

− 1. We discuss this in
Section 3.1. This representation is significantly smaller than the size O(nn−3) representation
constructed by Brändén [Brä14], and about half the size of the smallest previously known

projected spectrahedral representation of R
n,(2)
+ [SP15].
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1.3 Related work

We briefly summarize related work on spectrahedral and projected spectrahedral representations

of the hyperbolicity cones R
n,(k)
+ and S

n,(k)
+ . Sanyal [San13] showed that R

n,(1)
+ is spectrahedral

by giving the following explicit definite determinantal representation of en−1(x), which we use
repeatedly in the paper.

Proposition 1. If 1⊥n = {x ∈ R
n : 1Tnx = 0}, and Vn is a n × (n − 1) matrix with columns

spanning 1⊥n , then there is a positive constant c such that

c en−1(x) = det(V T
n diag(x)Vn) and so R

n,(1)
+ = {x ∈ R

n : V T
n diag(x)Vn � 0}.

This representation is also implicit in the work of Choe, Oxley, Sokal, and Wagner [COSW04].

Zinchenko [Zin08], gave a projected spectrahedral representation of R
n,(1)
+ . Brändén [Brä14], estab-

lished that each of the cones R
n,(k)
+ are spectrahedral by constructing graphs G with edges weighted

by linear forms in x, such that the edge weighted Laplacian LG(x) is positive semidefinite if and

only if x ∈ R
n,(k)
+ . Amini showed that the hyperbolicity cones associated with certain multivari-

ate matching polynomials are spectrahedral [Ami16], and used these to find new spectrahedral

representations of the cones R
n,(k)
+ of size (n−1)!

(k−1)! + 1.

Explicit projected spectrahedral representations of the cones S
n,(k)
+ of size O(n2min{k, n− k})

were given by Saunderson and Parrilo [SP15], leaving open (except in the cases k = n − 2, n − 1)

the question of whether these cones are spectrahedra. The main result of this paper is that S
n,(1)
+

is a spectrahedron.

2 Proof of Theorem 1

In this section we give two proofs of Theorem 1. The first proof is convex geometric in nature
whereas the second is algebraic in nature. Both arguments are self-contained. We present the
geometric argument first because it suggests the choice of multiplier q for the algebraic argument.

Both arguments take advantage of the fact that the cone S
n,(1)
+ satisfies QS

n,(1)
+ QT = S

n,(1)
+

for all Q ∈ O(n). One way to see this is to observe that the hyperbolic polynomial En−1(X)
that determines the cone satisfies En−1(QXQT ) = En−1(X) for all Q ∈ O(n) and the direction of
hyperbolicity (the identity) is also invariant under this group action.

2.1 Geometric argument

We begin by stating a slight reformulation of Sanyal’s spectrahedral representation (Proposition 1).

Proposition 2. Let 1⊥n = {y ∈ R
n : 1Tny = 0} be the subspace of Rn orthogonal to 1n. Then

R
n,(1)
+ = {x ∈ R

n : yT diag(x)y ≥ 0 for all y ∈ 1⊥n }.

Proof. This follows from Proposition 1 since V T
n diag(x)Vn � 0 holds if and only if uTV T

n diag(x)Vnu ≥
0 for all u ∈ R

n−1 which holds if and only if yT diag(x)y ≥ 0 for all y ∈ 1⊥n .

In this section we establish a ‘matrix’ analogue of Proposition 2.

Theorem 2. Let I⊥n = {Y ∈ Sn : tr(Y ) = 0} be the subspace of n × n symmetric matrices with
trace zero. Then

S
n,(1)
+ = {X ∈ Sn : tr(Y XY ) ≥ 0, for all Y ∈ I⊥n }. (4)

4



The concrete spectrahedral description given in Theorem 1 follows immediately from Theorem 2.
Indeed if B1, B2, . . . , Bd are a basis for I⊥n then an arbitrary Y ∈ I⊥n can be written as Y =
∑d

i=1 yiBi. The condition tr(Y XY ) ≥ 0 for all Y ∈ I⊥n is equivalent to

d
∑

i,j=1

yiyjtr(BiXBj) ≥ 0 for all y ∈ R
d which holds if and only if B(X) � 0.

of Theorem 2. The convex cone S
n,(1)
+ is invariant under the action of the orthogonal group on

n× n symmetric matrices by congruence transformations. Similarly, the convex cone

{X ∈ Sn : tr(Y XY ) ≥ 0 for all Y ∈ I⊥n }

is invariant under the same action of the orthogonal group. This is because X ∈ I⊥n if and only if
QXQT ∈ I⊥ for any orthogonal matrix Q.

Because of these invariance properties, the following (straightforward) result tells us that we
can establish Theorem 2 by showing that the diagonal ‘slices’ of these two convex cones agree.

Lemma 1. Let K1,K2 ⊂ Sn be such that QK1Q
T = K1 for all Q ∈ O(n) and QK2Q

T = K2 for
all Q ∈ O(n). If {x ∈ R

n : diag(x) ∈ K1} = {x ∈ R
n : diag(x) ∈ K2} then K1 = K2.

Proof. Assume that X ∈ K1. Then there exists Q such that QXQT = diag(λ(X)). Since
K1 is invariant under orthogonal congruence, diag(λ(X)) ∈ K1. By assumption, it follows that
diag(λ(X)) ∈ K2. Since K2 is invariant under orthogonal congruence, X = QT diag(λ(X))Q ∈ K2.
This establishes that K1 ⊆ K2. Reversing the roles of K1 and K2 completes the argument.

Relating the diagonal slices To complete the proof of Theorem 2, it suffices (by Lemma 1) to
show that the diagonal slices of the left- and right-hand sides of (4) are equal. Since the diagonal

slice of S
n,(1)
+ is R

n,(1)
+ , it is enough (by Proposition 2) to establish the following result.

Lemma 2.

{x ∈ R
n : tr(Y diag(x)Y ) ≥ 0 for all Y ∈ I⊥n } =

{x ∈ R
n : yT diag(x)y ≥ 0 for all y ∈ 1⊥n }.

Proof. Suppose that tr(Y diag(x)Y ) ≥ 0 for all Y ∈ I⊥n . Let y ∈ 1⊥n . Then diag(y) ∈ I⊥n and so it
follows that tr(diag(y) diag(x) diag(y)) = yT diag(x)y ≥ 0. This shows that the left hand side is a
subset of the right hand side.

For the reverse inclusion suppose that yT diag(x)y ≥ 0 for all y ∈ 1⊥n . Let Y ∈ I⊥n . Suppose the
symmetric group on n symbols, Sn, acts on R

n by permutations. Then for every σ ∈ Sn, we have
that σ · λ(Y ) ∈ 1⊥n and thus

tr(diag(σ · λ(Y 2)) diag(x)) = (σ · λ(Y ))T diag(x)(σ · λ(Y )) ≥ 0.

(Here we have used λi(Y
2) = λi(Y )2, by our definition of λ(·).)

The diagonal of a symmetric matrix is a convex combination of permutations of its eigenvalues,
a result due to Schur [Sch23] (see also, e.g., [MOA79]). Hence diag(Y 2) is a convex combination of
permutations of λ(Y 2), i.e.,

diag(Y 2) =
∑

σ∈Sn

ησ (σ · λ(Y 2))

5



where the ησ satisfy ησ ≥ 0 and
∑

σ∈Sn

ησ = 1. It then follows that

tr(Y diag(x)Y ) = tr(diag(Y 2) diag(x)) =
∑

σ∈Sn

ησtr(diag(σ · λ(Y 2)) diag(x)) ≥ 0.

This shows that the right hand side is a subset of the left hand side.

This completes the proof of Theorem 2.

2.2 Algebraic argument

In this section, we establish the following algebraic version of Theorem 1.

Theorem 3. Let n ≥ 2 and B1, . . . , Bd be a basis for I⊥n , the subspace of n×n symmetric matrices
with trace zero. Then there is a positive constant c (depending on the choice of basis) such that

1. q(X) =
∏

1≤i<j≤n(λi(X) + λj(X)) is hyperbolic with respect to In;

2. the hyperbolicity cone associated with q satisfies

Λ+(q, In) = {X ∈ Sn : λi(X) + λj(X) ≥ 0 for all 1 ≤ i < j ≤ n} ⊇ S
n,(1)
+ ;

3. q(X)En−1(X) has a definite determinantal representation as

c q(X)En−1(X) = det(B(X)).

We remark that q(X) is defined as a symmetric polynomial in the eigenvalues of X, and so can
be expressed as a polynomial in the entries of X. Although our argument does not use this fact,
it can be shown that q(X) = det(L2(X)) where L2(X) is the second additive compound matrix of
X [Fie74]. This means that q is not only hyperbolic with respect to In, but also has a definite
determinantal representation.

of Theorem 3. The three items in the statement of Theorem 3 are established in the following three
Lemmas (Lemmas 3, 4, and 5).

Lemma 3. If q(X) =
∏

1≤i<j≤n(λi(X) + λj(X)) then q is hyperbolic with respect to In.

Proof. First observe that q(In) = 2(
n

2
) 6= 0. Moreover, for any real t,

q(X − tIn) =
∏

1≤i<j≤n

(λi(X − tIn) + λj(X − tIn)) =
∏

1≤i<j≤n

(λi(X) + λj(X)− 2t)

which has
(n
2

)

real roots given by 1
2 (λi(X) + λj(X)) for 1 ≤ i < j ≤ n. Hence q is hyperbolic with

respect to In.

Lemma 4. If n ≥ 2 then

Λ+(q, In) = {X ∈ Sn : λi(X) + λj(X) ≥ 0 for all 1 ≤ i < j ≤ n} ⊇ S
n,(1)
+ .

6



Proof. Since the roots of t 7→ q(X − tIn) are 1
2(λi(X) + λj(X)), the description of Λ+(q, In) is

immediate. Both sides of the inclusion are invariant under congruence by orthogonal matrices. By
Lemma 1 it is enough to show that the inclusion holds for the diagonal slices of both sides. Note
that

{x ∈ R
n : diag(x) ∈ Λ+(q, In)} = {x ∈ R

n : xi + xj ≥ 0 for all 1 ≤ i < j ≤ n}.

Hence it is enough to establish that

{x ∈ R
n : xi + xj ≥ 0 for all 1 ≤ i < j ≤ n} ⊇ R

n,(1)
+ . (5)

To do so, we use the characterization of R
n,(1)
+ from Proposition 2. This tells us that if x ∈ R

n,(1)
+ then

vT diag(x)v =
∑n

ℓ=1 xℓv
2
ℓ ≥ 0 for all v ∈ 1⊥n . In particular, let v be the element of 1⊥n with vi = 1

and vj = −1 and vk = 0 for k /∈ {i, j}. Then, if x ∈ R
n,(1)
+ it follows that

∑n
ℓ=1 xℓv

2
ℓ = xi + xj ≥ 0.

This completes the proof.

Lemma 5. If B1, . . . , Bd is a basis for I⊥n , then there is a positive constant c (depending on the
choice of basis) such that

c q(X)En−1(X) = det(B(X)).

Proof. Since both sides are invariant under orthogonal congruence, it is enough to show that the
identity holds for diagonal matrices. In other words, it is enough to show that

c
∏

1≤i<j≤n

(xi + xj)en−1(x) = det(B(diag(x))).

Since a change of basis for the subspace of symmetric matrices with trace zero only changes
det(B(X)) by a positive constant (which is one if the change of basis is orthogonal with respect to
the trace inner product), it is enough to choose a particular basis for the subspace of symmetric
matrices with trace zero, and show that the identity holds for a particular constant.

Let v1, v2, . . . , vn−1 be a basis for 1⊥n = {x ∈ R
n :

∑n
i=1 xi = 0}. Let Mij be the n × n

matrix with a one in the (i, j) and the (j, i) entry, and zeros elsewhere. Clearly the Mij for
1 ≤ i < j ≤ n form a basis for the subspace of symmetric matrices with zero diagonal. Together
diag(v1),diag(v2), . . . ,diag(vn−1) and Mij for 1 ≤ i < j ≤ n form a basis for the subspace of
symmetric matrices with trace zero.

Using this basis we evaluate the matrix B(diag(x)). We note that

tr(diag(vi) diag(x) diag(vj)) = vTi diag(x)vj for 1 ≤ i, j ≤ n

tr(diag(vi) diag(x)Mjk) = 0 for all 1 ≤ i ≤ n and 1 ≤ j < k ≤ n

since Mjk has zero diagonal, and that

tr(Mij diag(x)Mkℓ) =

{

xi + xj if i = k and j = ℓ

0 otherwise

for all 1 ≤ i < j ≤ n and 1 ≤ k < ℓ ≤ n. This means that B(diag(x)) is block diagonal, and so

det(B(diag(x))) =
∏

1≤i<j≤n

(xi + xj) det(V
T
n diag(x)Vn) (6)

where Vn is the n× (n−1) matrix with columns v1, v2, . . . , vn. By Proposition 1, there is a positive
constant c such that

det(V T
n diag(x)Vn) = c en−1(x), (7)

Combining (6) and (7) gives the stated result.

This completes the proof of Theorem 3.
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3 Discussion

3.1 Consequences of Theorem 1

A straightforward consequence of Theorem 1 is that if p has a definite determinantal representation,
and e is a direction of hyperbolicity for p, then the hyperbolicity cone associated with the directional
derivative Dep is spectrahedral.

Corollary 1. If p(x) = det(
∑n

i=1Aixi) for symmetric ℓ × ℓ matrices A1, . . . , An, and A0 =
∑m

i=1Aiei is positive definite, then Λ+(Dep, e) has a spectrahedral representation of size
(ℓ+1

2

)

− 1.

Proof. The hyperbolicity cone Λ+(Dep, e) can be expressed as

Λ+(Dep, e) =

{

x ∈ R
n :

n
∑

i=1

A
−1/2
0 AiA

−1/2
0 xi ∈ S

n,(1)
+

}

.

(see, e.g., [SP15, Proposition 4]). Applying Theorem 1 then gives

Λ+(Dep, e) =

{

x ∈ R
n : B

(

n
∑

i=1

A
−1/2
0 AiA

−1/2
0 xi

)

� 0

}

.

Our main result also yields a spectrahedral representation of R
n,(2)
+ , the second derivative re-

laxation of the non-negative orthant, of size
(n
2

)

− 1. This is, in fact, a special case of Corollary 1.
In the statement below, Vn is any n× (n− 1) matrix with columns that span 1⊥n .

Corollary 2. The hyperbolicity cone R
n,(2)
+ has a spectrahedral representation of size

(

n
2

)

− 1 given
by

R
n,(2)
+ = {x ∈ R

n : B(V T
n diag(x)Vn) � 0}.

Proof. First, we use the fact that R
n,(2)
+ = Λ+(D1nen−1, 1n). Then, by Sanyal’s result (Proposi-

tion 1), we know that en−1(x) has a definite determinantal representation. The stated result then
follows directly from Corollary 1 with polynomial p = en−1 and direction e = 1n.

3.2 Questions

Constructing spectrahedral representations It is natural to ask for which values of k the

cones S
n,(k)
+ are spectrahedral. Our main result shows that S

n,(1)
+ has a spectrahedral representation

of size d =
(

n+1
2

)

− 1. The only other cases for which spectrahedral representations are known are
the straightforward cases k = n− 1 and k = n− 2. If k = n− 1 then

S
n,(n−1)
+ = {X ∈ Sn : tr(X) ≥ 0}

is a spectrahedron (with a representation of size 1). Since S
n,(n−2)
+ is a quadratic cone, it is

a spectrahedron. To give an explicit representation, let d =
(

n+1
2

)

− 1 and B1, B2, . . . , Bd be an

orthonormal basis (with respect to the trace inner product) for the subspace I⊥n . Now X ∈ S
n,(n−2)
+

if and only if (see, e.g., [SP15, Section 5.1])

tr(X) ≥ 0 and tr(X)2 − tr(X2) =

[

√

n− 1

n
tr(X)

]2

−

d
∑

i=1

tr(BiX)2 ≥ 0. (8)

8



By a well-known spectrahedral representation of the second-order cone, (8) holds if and only if

√

n− 1

n
tr(X)Id +















tr(B1X) tr(B2X) tr(B3X) · · · tr(BdX)
tr(B2X) −tr(B1X) 0 · · · 0
tr(B3X) 0 −tr(B1X) · · · 0

...
...

...
. . .

...
tr(BdX) 0 0 · · · −tr(B1X)















� 0. (9)

So we see that S
n,(n−2)
+ has a spectrahedral representation of size d =

(n+1
2

)

− 1. At this stage, it
is unclear how to extend the approach in this paper to the remaining cases.

Question 1. Are the cones S
n,(k)
+ spectrahedral for k = 2, 3, . . . , n− 3?

At first glance, it may seem that Corollary 1 allows us to construct a spectrahedral representa-

tion for S
n,(2)
+ from a spectrahedral representation for S

n,(1)
+ . However, this is not the case. To apply

Corollary 1 to this situation, we would need a definite determinantal representation of En−1(X),
which our main result (Theorem 1) does not provide.

Lower bounds on size Another natural question concerns the size of spectrahedral representa-
tions of hyperbolicity cones. Given a hyperbolicity cone K, there is a unique (up to scaling) hyper-
bolic polynomial p of smallest degree d that vanishes on the boundary of K (see, e.g., [Kum16]).
Clearly any spectrahedral representation must have size at least d, but it seems that in some cases
the smallest spectrahedral representation (if it exists at all) must have larger size.

Question 2. Is there a spectrahedral representation of S
n,(1)
+ with size smaller than

(

n+1
2

)

− 1?

Recently, there has been considerable interest in developing methods for producing lower bounds
on the size of projected spectrahedral descriptions of convex sets (see, e.g., [FGP+15]) . There has
been much less development in the case of lower bounds on the size of spectrahedral descriptions.
The main work in this direction is due to Kummer [Kum16]. For instance it follows from [Kum16,

Theorem 1] that any spectrahedral representation of the quadratic cone S
n,(n−2)
+ must have size

at least 1
2

[(n+1
2

)

− 1
]

. Furthermore, in the special case that
(n+1

2

)

− 1 = 2k + 1 for some k
(which occurs if n = 3 and k = 2 or n = 4 and k = 3) then Kummer’s work shows that any

spectrahedral representation of S
n,(n−2)
+ must have size at least

(

n+1
2

)

−1. This establishes that the
construction in (9) is optimal when n = 3 and n = 4. Furthermore, in the case n = 3 we have that

S
n,(1)
+ = S

n,(n−2)
+ . Hence our spectrahedral representation for S

n,(1)
+ is also optimal if n = 3.
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