Skip to main content
Log in

Mixed-integer programming approaches for the tree \(t^*\)-spanner problem

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

The tree \(t^*\)-spanner problem is an NP-hard problem, which is concerned with finding a spanning tree in a given undirected weighted graph, such that for each pair of nodes the ratio of the shortest distance in the spanning tree and the shortest distance in the given graph is bounded by t. The goal is to find a spanning tree, which gives the minimal t. This problem is associated with many network design applications, but in particular, in the context of architecture of distributed systems. We introduce mixed-integer programming formulations for the tree \(t^*\)-spanner problem, and present a branch-and-cut solution approach based on these formulations. The branch-and-cut is enhanced with an initialization procedure and a primal heuristic. A computational study is done to assess the effectiveness of our proposed algorithmic strategies. To the best of our knowledge, this is the first time that an exact approach is proposed for this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Althöfer, I., Das, G., Dobkin, D., Joseph, D., Soares, J.: On sparse spanners of weighted graphs. Discrete Comput. Geom. 9(1), 81–100 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Álvarez-Miranda, E., Fernández, E., Ljubić, I.: The recoverable robust facility location problem. Transp. Res. Part B: Methodol. 79, 93–120 (2015)

    Article  Google Scholar 

  3. Awerbuch, B.: Complexity of network synchronization. J. Assoc. Comput. Mach. 32(4), 804–823 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Awerbuch, B., Baratz, A., Peleg, D.: Effcient broadcast and light-weight spanners. Weizmann Institute of Science, Technical Report N. CS92-22 (1992)

  5. Bandelt, H., Dress, A.: Reconstructing the shape of a tree from observed dissimilarity data. Adv. Appl. Math. 7(3), 309–343 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bharath-Kumar, K., Jaffe, J.: Routing to multiple destinations in computer networks. IEEE Trans. Commun. 31(3), 343–351 (1983)

    Article  MATH  Google Scholar 

  7. Bhatt, S., Chung, F., Leighton, T., Rosenberg, A.: Optimal simulations of tree machines. In: Proceedings of the 27th Annual Symposium on Foundations of Computer Science, pp. 274–282 (1986)

  8. Cai, L., Corneil, D.: Tree spanners. SIAM J. Discrete Math. 8(3), 359–387 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cai, L., Mark Keil, J.: Computing visibility information in an inaccurate simple polygon. Int. J. Comput. Geom. Appl. 7(6), 515–537 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cherkassky, B., Goldberg, A.: On implementing push-relabel method for the maximum flow problem. In: Balas, E., Clausen, J. (eds.) Proceedings of IPCO IV, vol. 920 of LNCS, pp. 157–171. Springer, Berlin (1995)

  11. Costa, A.: A survey on benders decomposition applied to fixed-charge network design problems. Comput. Oper. Res. 32(6), 1429–1450 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Elkin, M., Emek, Y., Spielman, D., Teng, S.: Lower-stretch spanning trees. SIAM J. Comput. 38(2), 608–628 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Emek, Y., Peleg, D.: Approximating minimum max-stretch spanning trees on unweighted graphs. SIAM J. Comput. 38(5), 1761–1781 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fischetti, M., Leitner, M., Ljubić, I., Luipersbeck, M., Monaci, M., Resch, M., Salvagnin, D., Sinnl, M.: Thinning out Steiner trees: a node-based model for uniform edge costs. Math. Program. Comput. 9(2), 203–229 (2017a)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fischetti, M., Ljubić, I., Sinnl, M.: Redesigning benders decomposition for large-scale facility location. Manag. Sci. 63(7), 2146–2162 (2017b)

    Article  Google Scholar 

  16. Koch, T., Martin, A.: Solving Steiner tree problems in graphs to optimality. Networks 32(3), 207–232 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liestman, A., Shermer, T.: Additive graph spanners. Networks 23(4), 343–363 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Magnanti, T., Wolsey, L.A.: Optimal trees. Handb. Oper. Res. Manag. Sci. 7, 503–615 (1995)

    MathSciNet  MATH  Google Scholar 

  19. Magnanti, T., Mireault, P., Wong, R.: Tailoring benders decomposition for uncapacitated network design. In: Gallo, G., Sandi, C. (eds.) Netflow at Pisa. Mathematical Programming Studies, vol. 26, pp. 112–154. Springer, Berlin (1986)

    Chapter  Google Scholar 

  20. Marble, J., Bekris, K.: Asymptotically near-optimal is good enough for motion planning, pp. 419–436 (2017)

  21. Peleg, D., Ullman, J.: An optimal synchronizer for the hypercube. SIAM J. Comput. 18(4), 740–747 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  22. Peleg, D., Upfal, E.: A tradeoff between space and efficiency for routing tables. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pp. 43–52. ACM (1988)

  23. Prim, R.C.: Shortest connection networks and some generalizations. Bell Labs Tech. J. 36(6), 1389–1401 (1957)

    Article  Google Scholar 

  24. Singh, K., Sundar, S.: Artifical bee colony algorithm using problem-specific neighborhood strategies for the tree t-spanner problem. Appl. Soft Comput. 62, 110–118 (2018)

    Article  Google Scholar 

  25. Venkatesan, G., Rotics, U., Madanlal, M., Makowsky, J., Pandu Rangan, C.: Restrictions of minimum spanner problems. Inf. Comput. 136(2), 143–164 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wong, R.: A dual ascent approach for Steiner tree problems on a directed graph. Math. Program. 28(3), 271–287 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

E.A.-M. acknowledges the support of the Chilean Council of Scientific and Technological Research, CONICYT, through the grant FONDECYT N. 1180670 and through the Complex Engineering Systems Institute (ICM-FIC:P-05-004-F, CONICYT:FB0816).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Álvarez-Miranda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Álvarez-Miranda, E., Sinnl, M. Mixed-integer programming approaches for the tree \(t^*\)-spanner problem. Optim Lett 13, 1693–1709 (2019). https://doi.org/10.1007/s11590-018-1340-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-018-1340-0

Keywords

Navigation