Skip to main content
Log in

Numeric algorithm for optimal impulsive control based on feedback maximum principle

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this short note, we present an approach for numeric analysis of a class of nonlinear optimal impulsive control problems with states of bounded variation. The approach is based on feedback necessary optimality condition laying in the formalism of the Pontryagin maximum principle (employing only the related standard constructions), but involving feedback control variations of an “extremal” structure. We make a “double reduction” of the impulsive control problem: first, we perform a well-known equivalent transform of the measure-driven system to an ordinary terminally-constrained control system and, second, pass to its discrete-time counterpart. For the resulted discrete control problem, we present a necessary condition of global optimality called the discrete feedback maximum principle. Based on this optimality condition, we elaborate a nonlocal numeric algorithm, which can, potentially, improve nonoptimal extrema of the discrete maximum principle. Due to a specific structure of the investigated model, the algorithm admits a deep specification. As an illustration of our approach, we present a numeric implementation of an academic example—a singular version of a generalized Sethi–Thompson investment problem from mathematical economics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arutyunov, A.V., Karamzin, D.Y., Pereira, F.L.: On constrained impulsive control problems. J. Math. Sci. 165(6), 654–688 (2010)

    Article  MathSciNet  Google Scholar 

  2. Bensoussan, A., Chutani, A., Sethi, S.: Optimal cash management under uncertainty. Oper. Res. Lett. 37, 425–429 (2009)

    Article  MathSciNet  Google Scholar 

  3. Boltyanskii, V.G.: Optimal Control of Discrete Systems. Nauka, Moscow (1973). (in Russian)

    Google Scholar 

  4. Bressan, A., Rampazzo, F.: Impulsive control systems without commutativity assumptions. J. Optim. Theory Appl. 81(3), 435–457 (1994)

    Article  MathSciNet  Google Scholar 

  5. Clarke, F.H., Ledyaev, Y.S., Stern, R.J., Wolenski, P.R.: Nonsmooth Analysis and Control Theory. Springer, New York (1998)

    MATH  Google Scholar 

  6. Daryin, A.N., Minaeva, Y.Y.: A numerical algorithm for solving the problem of the synthesis of impulsive controls under uncertainty. J. Comput. Syst. Sci. Int. 52(3), 365–376 (2013)

    Article  MathSciNet  Google Scholar 

  7. Daryin, A.N., Malakaeva, A.Y.: Numerical methods for the synthesis of impulse controls for linear systems. J. Comput. Syst. Sci. Int. 47(2), 207–213 (2008)

    Article  MathSciNet  Google Scholar 

  8. Dykhta, V.A.: Nonstandard duality and nonlocal necessary optimality conditions in nonconvex optimal control problems. Autom. Remote Control 75(11), 1906–1921 (2014)

    Article  MathSciNet  Google Scholar 

  9. Dykhta, V.A.: Positional strengthenings of the maximum principle and sufficient optimality conditions. Proc. Steklov Inst. Math. 293(1), S43–S57 (2016)

    Article  Google Scholar 

  10. Dykhta, V.A.: Variational necessary optimality conditions with feedback descent controls for optimal control problems. Dokl. Math. 91(3), 394–396 (2015)

    Article  MathSciNet  Google Scholar 

  11. Dykhta, V.A.: Weakly monotone solutions of the Hamilton–Jacobi inequality and optimality conditions with positional controls. Autom. Remote Control 75(5), 829–844 (2014)

    Article  MathSciNet  Google Scholar 

  12. Dykhta, V., Samsonyuk, O.: A maximum principle for smooth optimal impulsive control problems with multipoint state constraints. Comput. Math. Math. Phys. 49(6), 942–957 (2009)

    Article  MathSciNet  Google Scholar 

  13. Dykhta, V., Samsonyuk, O.: Optimal Impulsive Control with Applications. Fizmathlit, Moscow (2000). (in Russian)

    MATH  Google Scholar 

  14. Goncharova, E.V., Staritsyn, M.V.: Control improvement method for impulsive systems. J. Comput. Syst. Sci. Int. 49(6), 883–890 (2010)

    Article  MathSciNet  Google Scholar 

  15. Goncharova, E.V., Staritsyn, M.V.: Gradient refinement methods for optimal impulse control problems autom. Remote Control 72(10), 2188–2195 (2011)

    Article  Google Scholar 

  16. Gornov, A.Y., Tyatyushkin, A.I., Finkelstein, E.A.: Numerical methods for solving terminal optimal control problems. Comput. Math. Math. Phys. 56(2), 221–234 (2016)

    Article  MathSciNet  Google Scholar 

  17. Gornov, A.Y., Zarodnyuk, T.S.: Tunneling algorithm for solving nonconvex optimal control problems. Optim. Simul. Control Springer Optim. Appl. 76, 289–299 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Grachev, I.I., Evtushenko, Y.G.: A library of programs for solving optimal control problems. USSR Comput. Math. Math. Phys. 19(2), 99–119 (1979)

    Article  Google Scholar 

  19. Gurman, V.I.: The Extension Principle in Control Problems. Nauka, Moscow (1997). (in Russian)

    MATH  Google Scholar 

  20. Gurman, V.I., Min’Kan, N.: Singular optimal control problems I, II, III. Autom. Remote Control 72(3, 4, 5), 497–511, 727–739, 929–943 (2011)

  21. Ioffe, A.D., Tikhomirov, V.M.: Theory of Extremal Problems. North-Holland, Amsterdam (1979)

    Google Scholar 

  22. Karamzin, D.: Necessary conditions of the minimum in an impulse optimal control problem. J. Math. Sci. 139(6), 7087–7150 (2006)

    Article  MathSciNet  Google Scholar 

  23. Krotov, V.F.: Global Methods in Optimal Control Theory. Monographs and Textbooks in Pure and Applied Mathematics, vol. 195. Marcel Dekker, New York (1996)

    Google Scholar 

  24. Kurzhanskii, A.B., Varaiya, P.: Impulsive inputs for feedback control and hybrid system modeling. In: Sivasundaram, S., Devi, J.V., Udwadia, F.E., Lasiecka, I. (eds.) Advances in Dynamics and Control: Theory Methods and Applications, pp. 305–326. Cambridge Scientific Publishers, Cambridge (2011)

    Google Scholar 

  25. Miller, B., Rubinovich, E.: Impulsive Control in Continuous and Discrete-Continuous Systems. Kluwer Academic/Plenum Publishers, New York (2003)

    Book  Google Scholar 

  26. Miller, B.: The generalized solutions of nonlinear optimization problems with impulse control. SIAM J. Control Optim. 34, 1420–1440 (1996)

    Article  MathSciNet  Google Scholar 

  27. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation. Springer, Berlin (2006)

    Book  Google Scholar 

  28. Motta, M., Rampazzo, F.: Space-time trajectories of nonlinear systems driven by ordinary and impulsive controls. Differ. Integral Equ. 8, 269–288 (1995)

    MathSciNet  MATH  Google Scholar 

  29. Rishel, R.: An extended Pontryagin principle for control systems whose control laws contain measures. J. Soc. Ind. Appl. Math. Ser. A Control 3, 191–205 (1965)

    Article  MathSciNet  Google Scholar 

  30. Sethi, S.P., Thompson, G.L.: Optimal Control Theory: Applications to Management Science and Economics. Springer, New York (2000)

    MATH  Google Scholar 

  31. Sorokin, S.P.: Necessary feedback optimality conditions and nonstandard duality in problems of discrete system optimization. Autom. Remote Control 75(9), 1556–1564 (2014)

    Article  MathSciNet  Google Scholar 

  32. Sorokin, S.P.: Estimates of Reachable Set and Sufficient Optimality Condition for Discrete Control Problems. Series Mathematics, vol. 19, pp. 178–183. Bulletin of Irkutsk State University, Irkutsk (2017). (in Russian)

    MATH  Google Scholar 

  33. Sorokin, S., Staritsyn, M.: Feedback necessary optimality conditions for a class of terminally constrained state-linear variational problems inspired by impulsive control. Numer. Algebra Control Optim. 7(2), 201–210 (2017)

    Article  MathSciNet  Google Scholar 

  34. Sorokin, S.P., Staritsyn, M.V.: Necessary optimality condition with feedback controls for nonsmooth optimal impulsive control problems. In: Proceedings of the VIII International Conference Optimization and Applications (OPTIMA-2017), pp. 531–538, Petrovac, Montenegro, 2–7 October 2017 (2017)

  35. Srochko, V.A.: Iterative Solution of Optimal Control Problems. Fizmatlit, Moscow (2000). (in Russian)

    Google Scholar 

  36. Staritsyn, M., Sorokin, S.: On feedback maximum principle for nonsmooth optimal impulsive control problems. In: Proceedings of the International Conference on Constructive Nonsmooth Analysis and Related Topics, pp. 127–129 . Dedicated to the Memory of Professor V. F. Demyanov, Saint Petersburg, Russia, 22–27 May 2017 (2017)

  37. Strekalovsky, A.S., Yanulevich, M.V.: On global search in nonconvex optimal control problems. J. Glob. Optim. 65(1), 119–135 (2016)

    Article  MathSciNet  Google Scholar 

  38. Vasilev, F.P.: Optimization Methods. Factorial Press, Moscow (2002). (in Russian)

    Google Scholar 

  39. Vdovina, O.I., Sesekin, A.N.: Numerical construction of attainability domains for systems with impulse control. Proc. Steklov Inst. Math. Dyn. Syst. Control Probl. 1, S246–S255 (2005)

    MathSciNet  MATH  Google Scholar 

  40. Vinter, R., Pereira, F.: A maximum principle for optimal processes with discontinuous trajectories. SIAM J. Control Optim. 26, 205–229 (1988)

    Article  MathSciNet  Google Scholar 

  41. Warga, J.: Variational problems with unbounded controls. J. SIAM Control Ser. A 3(3), 424–438 (1987)

    MathSciNet  MATH  Google Scholar 

  42. Zavalischin, S., Sesekin, A.: Dynamic Impulse Systems: Theory and Applications. Kluwer Academic Publishers, Dorderecht (1997)

    Book  Google Scholar 

Download references

Acknowledgements

The work is partially supported by the Russian Foundation for Basic Research, Grants Nos. 16-31-60030, 16-08-00272 and 17-01-00733. We thank professor A.Yu. Gornov for cooperation, which lets us provide validation and comparison of our algorithm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stepan P. Sorokin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorokin, S.P., Staritsyn, M.V. Numeric algorithm for optimal impulsive control based on feedback maximum principle. Optim Lett 13, 1953–1967 (2019). https://doi.org/10.1007/s11590-018-1344-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-018-1344-9

Keywords

Navigation