
ar
X

iv
:1

81
1.

00
62

2v
1

 [
m

at
h.

O
C

]
 1

 N
ov

 2
01

8

Packing a fixed number of identical circles in a circular container

with circular prohibited areas

C.O. López∗1 and J.E. Beasley†2

1Faculty of Sciences, National Autonomous University of Mexico, Mexico City, Mexico
2Mathematical Sciences, Brunel University, Uxbridge UB8 3PH, UK and JB

Consultants, Morden, UK

June 2017, Revised July 2018

Abstract

In this paper we consider the problem of packing a fixed number of identical circles inside
the unit circle container, where the packing is complicated by the presence of fixed size
circular prohibited areas. Here the objective is to maximise the radius of the identical circles.
We present a heuristic for the problem based upon formulation space search. Computational
results are given for six test problems involving the packing of up to 100 circles. One test
problem has a single prohibited area made up from the union of circles of different sizes. Four
test problems are annular containers, which have a single inner circular prohibited area. One
test problem has circular prohibited areas that are disconnected.

Keywords: Circle packing; Formulation space search; Nonlinear optimisation; Prohibited
area

1 Introduction

In this paper we consider the problem of packing a given number of circles of identical size
inside a circular container. This problem can be viewed from two different, but equivalent,
perspectives:

1. minimise the size of the container having fixed size circles to be packed; or

2. maximise the identical size of the circles to be packed having a container of fixed size.

These problems are equivalent since there is a simple relationship between them based on scaling.
In this paper we adopt the second perspective, with the container being the unit circle. We

consider problems with differing types of fixed size circular prohibited areas. The first type has a
single prohibited area as the union of circles of different sizes, as shown in Fig. 1(a). The second
type are annular containers, which have a single inner circular prohibited area, such as those

∗claudia.lopez@ciencias.unam.mx
†john.beasley@brunel.ac.uk; john.beasley@jbconsultants.biz

1

http://arxiv.org/abs/1811.00622v1

shown in Figs. 1(b) and 1(c). In Figs. 1(a) to 1(c) we show a packing of five identical circles,
where the prohibited areas are shown as solid circles. The third type has circular prohibited
areas that are disconnected.

(a) Prohibited area: Union
of circles

(b) Prohibited area: Cen-
tre placed annular

(c) Prohibited area: Bot-
tom placed annular

Figure 1: Circle packing problem with n = 5 identical circles with circular prohibited areas

Note here that a characteristic of the packing problem considered in this paper is that, as
the number of circles to be packed is fixed, and the objective is to maximise the (identical)
radius of these circles, a packing might well involve unused space. This behaviour can be seen in
in Figs. 1(a) to 1(c). In particular note that the packings seen in Figs. 1(b) and 1(c), which are
known to be optimal from geometric considerations, have a significant amount of unused space.
Indeed none of the circles seen in Figs. 1(b) and 1(c) are even in contact with the prohibited
area.

The heuristic presented here is an iterative procedure that uses formulation space search
(henceforth FSS). This method can be seen as a procedure in which different formulations of
the problem are used at every iteration in order to try and discover better solutions. The way
we construct the formulations is explained below. The contribution of this paper is:
• to consider the problem of maximising the radius of a given number of identical circles

when packed inside a circular container with fixed size circular prohibited areas
• to present computational results for six test problems, involving differing prohibited areas,

with up to 100 circles
• to use formulation space search, a new and emerging metaheuristic

Although the prohibited areas seen in in Figs. 1(a) to 1(c) are connected (albeit trivially so in
the case of Figs. 1(b) and 1(c)) this is not a restriction on the heuristic presented in this paper.
We do present below computational results for a test problem where the prohibited areas are
disconnected.

The motivation for studying the circle packing problem with prohibited areas considered in
this paper is that the problem appears when adopting a sequential/priority approach to packing.
In some situations certain circular items have to be packed first, followed by a packing of the
remaining circular items. In terms of the problem considered in this paper the circular items that
are packed first become prohibited areas with regard to the packing of the remaining circular
items.

This paper is organised as follows. In Section 2 we present a literature survey, reviewing
circle packing with prohibited areas and its practical applications and FSS. In Section 3 we
present our formulation of the problem whilst Section 4 describes the algorithm proposed. In

2

Section 5 we present computational results and finally in Section 6 we present conclusions.

2 Literature survey

In this section we review the work that has been done with respect to circle packing and prohib-
ited areas. We discuss the practical applications of the circle packing problem with prohibited
areas considered in this paper. We also give a brief introduction to FSS and the work that has
been done using FSS. Note here that circle packing without prohibited areas has been exten-
sively discussed in the literature (e.g. see the survey papers [6,14]) and so, for reasons of space,
we do not discuss that work here.

2.1 Circle packing with prohibited areas

The circle packing problem with circular prohibited areas has not been considered at all in the
literature until comparatively recently.

Stoyan and Yaskov [31] considered the problem of packing the maximal number of identical
circles of fixed radius inside a fixed size circular container with fixed size circular prohibited
areas. Their approach, based on work in [32], defines a function for each circle i that is one if
circle i is inside the container and does not intersect with any prohibited area, zero otherwise.
They then maximise the sum of these functions subject to the constraint that the circles do
not intersect. Their objective function is therefore discontinuous and takes values 0, 1, 2, . . . , n.
This is then reduced to a finite sequence of problems with linear objective functions. In order to
generate a feasible initial solution they use a modification of the Zountendijk method of feasible
directions. Detailed computational results were given for 13 test problems.

In [31] Stoyan and Yaskov refer to the earlier work of Li and Akeb [18]. Although [18] does
not refer to prohibited areas Li and Akeb do consider the problem of packing the maximal
number of identical circles of fixed radius inside a fixed size circular container. In particular,
they considered an annular container, where there is an single inner fixed circle that cannot
be used, so the packed circles cannot intersect with this inner circle. In other words the inner
circle is a single prohibited area, as shown for example in Figs. 1(b) and 1(c). Li and Akeb [18]
presented two greedy heuristics based upon differing rules for circle placement. With respect
to annular containers detailed computational results were given for 9 test problems. Note here
that the problem considered in [18,31] is different from the problem considered in this paper.
In [18,31] the circle radius is fixed and the optimisation relates to the number of circles packed.
In our work in this paper the number of circles is fixed and the optimisation relates to the circle
radius.

With respect to packing circles with prohibited areas the only other work we are aware of
is [33] which deals with minimising the length of a strip (which contains prohibited areas) when
packing both circles and non-convex polygons.

With regard to a related problem involving prohibited areas Zhuang et al [37] considered the
problem of packing a fixed number of unit circles inside a square so as to minimise the size of
the containing square (minimising the length of the side of the square, thereby also minimising
its area and circumference). In their approach the problem is complicated by the presence
within the square of a number of prohibited areas (which they term damaged areas) that cannot
overlap with any unit circle. In the computational examples they considered these damaged
areas were composed of very small non-overlapping squares that, in total, only constituted

3

approximately 2.22% of the area of the containing square. They presented an approach based on
an enhancement of greedy vacancy search [16] and too used simulated annealing. Computational
results were presented for a number of randomly generated problems involving the packing of
up to 70 unit circles.

2.2 Applications

The circle packing problem has a long history and a wide variety of applications. An introduction
to its history can be found in Szabó et al [34]. Industrial applications of the circle packing
problem such as: circular cutting, container loading, cylinder packing, facility dispersion and
communication networks, facility and dashboard layout, are considered in Castillo et al [6].
Other applications that have been considered in the literature include the packing of optical
fibres into tubes, see Wang et al [35].

With regard to the circle packing problem with prohibited areas considered in this paper
then, as mentioned previously above, the problem appears when adopting a sequential/priority
approach to packing. So here, for example for a number of practical reasons, certain circular
items have to be packed first, followed by a packing of the remaining circular items. In terms of
the problem considered in this paper the circular items that are packed first become prohibited
areas with regard to the packing of the remaining circular items.

For example, consider Fig. 1(c) and regard the circular container as a tube into which we have
to pack a number of circular cables. For a variety of reasons one particular cable has to be placed
at the bottom of the tube. One reason why this might occur is simply weight considerations, if
this cable is much heavier than the other cables to be positioned in the tube it naturally makes
sense to have it at the bottom of the tube. So this cable has to be positioned first, and hence
becomes a prohibited area for the packing of the remaining circular cables (i.e. we have a bottom
placed annular prohibited area as seen in Fig. 1(c)). We would note here that the algorithm
presented in this paper is capable of dealing with any number of prohibited areas, wherever they
are positioned in the circular container.

Another practical example where some circular items have to be packed first, followed by a
packing of the remaining circular items, would relate to situations (as in Wieman [36]) where
certain of the circular items are tubes through which coolant flows and have to be prepositioned
in order to provide adequate coolant coverage for the other items that have yet to be packed.

A recent practical application that adopts a sequential packing approach is given in Pedroso
et al [28]. In that paper the authors consider the problem of the packing of tubes within a single
circular outer tubular container.

2.3 Formulation space search (FSS)

When solving nonlinear non-convex problems with the aid of a solver, Mladenović et al [25]
observed that different formulations of the same problem may have different characteristics.
Hence a natural way to proceed is by swapping between formulations. Under this framework
Mladenović et al [25] used FSS for the circle packing problem considering two formulations of
the problem: one in a Cartesian coordinate system, the other in a Polar coordinate system.
Their algorithm solves the problem with one formulation at a time and when the solution value
is the same for both formulations the algorithm terminates. They considered the case of packing
identical circles and their computational results were for up to 100 circles packed into the unit
circle and the unit square.

4

In Mladenović et al [26] they improved on [25] by considering a mixed formulation of the
problem; they set a subset of the circles in the Cartesian system whilst the rest of the circles were
in the Polar system. A reduction in the number of the non-overlapping constraints was made
at the initial solution by disregarding points sufficiently far away from each other. They gave
computational results for up to 100 identical circles inside the unit circle. López and Beasley [20]
used FSS for the problem of packing equally sized circles inside a variety of containers. They
presented computational results which show that their approach improves upon previous results
based on FSS presented in the literature. For some of the containers considered they improve on
the best result known previously. López and Beasley [21] used FSS to solve the packing problem
with non-identical circles in different shaped containers. They presented computational results
which were compared with benchmark problems and also proposed some new instances.

López and Beasley [23] used FSS to solve the problem of packing non-identical circles in
a fixed size circular container. This involves making a choice as to which circles to pack, as
well as deciding the location of any packed circle within the container. López and Beasley [24]
used FSS to solve the problem of packing unequal rectangles and squares in a fixed size circular
container. This also involves making a choice as to which objects to pack, as well as deciding the
location of any packed object within the container. With respect to the packing of rectangles
they considered both fixed orientation and rotation through 90 degrees.

Essentially underlying FSS is the fact that because of the nature of the solution process
in nonlinear optimisation we often fail to obtain a globally optimum solution from a single
formulation. This may be because of the non-convex nature of the formulation considered, or
due to user termination of the search process for computational reasons (e.g. terminating the
search upon reaching a predefined time limit). As a consequence of this perturbing/changing
the formulation and resolving the nonlinear program may lead to an improved solution. This
leads naturally to the idea of constructing iterative schemes that move between formulations in
a systematic manner.

Note here that within FSS we consider a number of different formulations of the same
problem. However FSS does not need to define a distance metric (distance function) that
measures the distance between any two formulations. Note too here that FSS is distinctly
different from repeatedly resolving a single formulation with different random starting solutions.
Rather FSS, by considering different formulations of the same problem, potentially provides
more opportunities to obtain good solutions.

FSS has been applied to a few problems additional to circle packing (e.g. timetabling [17]).
In [22] FSS was used to solve some benchmark mixed-integer nonlinear programming problems.
In a more general sense an adaptation to FSS was presented in [4] for solving continuous location
problems. More discussion as to FSS can be found in Hansen et al [10]. A related approach is
variable space search, which has been applied to graph colouring (Hertz et al [12, 13]). Other
related approaches are variable formulation search which has been applied to the cutwidth min-
imisation problem [7,27] and variable objective search which has been applied to the maximum
independent set problem [5].

As noted in Pardo et al [27] variable space search, variable formulation search and variable
objective search contain similar ideas as originally expounded using FSS. At a slightly more
general level FSS can be regarded as a variant of variable neighbourhood search, for example
see [1, 11]. Recently Erromdhani et al [8] used the phrase variable neighbourhood formulation
search to describe their approach for solving the multi-item capacitated lot-sizing problem with
time windows and setup times. In their approach both formulations and neighbourhoods are

5

changed during the search process.

3 Formulation

The formulation that we use to address the packing of n circles with identical size into a two-
dimensional circular container (of unit radius, centred at the origin) with fixed size circular
prohibited areas involves the following notation. Let:
• C be the (indexed) set of circles whose centres are expressed in Cartesian coordinates, so

for circle i ∈ C its centre is at (xi, yi) in Cartesian coordinates
• P be the (indexed) set of circles whose centres are expressed in Polar coordinates, so for

circle i ∈ P its centre is at (ri, θi) in Polar coordinates, where P ∩ C = ∅ and P ∪ C =
{1, ..., n}

• Q be the set of all pairs {(i, j)|i = 1, ..., n; j = 1, ..., n; i 6= j}
• F be the set of fixed prohibited circular areas, where circle f ∈ F has radius R∗

f , being
centred at (x∗f , y

∗
f) in Cartesian coordinates (correspondingly (r∗f , θ

∗
f) in Polar coordinates)

• Q∗ be the set of all pairs {(i, f)|i = 1, ..., n; f ∈ F}
• R be the radius associated with each of the n circles
• Roverall be any suitable upper bound on R, defined here by equating the area of the contain-

ing unit circle minus the area of the largest circular prohibited area (π12−maxf∈Fπ(R
∗
f)

2)

to the total area of the n circles (nπR2
overall), so Roverall =

√

(1−maxf∈F (R
∗
f)

2)/n

Although we have above (using disjoint sets C and P) separated centres expressed in Cartesian
and Polar coordinates, note here that the relationship between the two coordinate systems is
that a point (x, y) in Cartesian space has equivalent coordinates (r, θ) in Polar space where
x = r cos(θ) and y = r sin(θ).

Our formulation of the problem then is:

max R (1)

subject to

x2i + y2i ≤ (1−R)2, ∀i ∈ C (2)

ri ≤ 1−R, ∀i ∈ P (3)

(xi − xj)
2 + (yi − yj)

2 ≥ 4R2, ∀(i, j) ∈ Q with i ∈ C j ∈ C i < j
(4)

(xi − rj cos(θj))
2 + (yi − rj sin(θj))

2 ≥ 4R2, ∀(i, j) ∈ Q with i ∈ C j ∈ P (5)

r2i + r2j − 2rirj cos(θi − θj) ≥ 4R2, ∀(i, j) ∈ Q with i ∈ P j ∈ P i < j

(6)

(xi − x∗f)
2 + (yi − y∗f)

2 ≥ (R+R∗
f)

2, ∀(i, f) ∈ Q∗ with i ∈ C f ∈ F (7)

r2i + (r∗f)
2 − 2rir

∗
f cos(θi − θ∗f) ≥ (R +R∗

f)
2, ∀(i, f) ∈ Q∗ with i ∈ P f ∈ F (8)

− 1 ≤ xi ≤ 1, ∀i ∈ C (9)

− 1 ≤ yi ≤ 1, ∀i ∈ C (10)

0 ≤ ri ≤ 1, ∀i ∈ P (11)

0 ≤ θi ≤ 2π, ∀i ∈ P (12)

6

0 ≤ R ≤ Roverall (13)

The objective function, Equation (1), maximises the radius of the identical circles to be packed.
Constraints (2) and (3) ensure that the centre coordinates of any circle lie inside the container,
in this case the unit circle. Constraint (4) imposes the non-overlapping condition, that is that
for any pair of circles with centres coordinates (xi, yi) and (xj , yj) the distance between them
is at least 2R. In a similar manner constraints (5)-(6) are the non-overlapping condition if one
or both circles are in the Polar coordinate system. Constraints (7)-(8) guarantee that no circle
will overlap any circle in the prohibited area. Constraints (9)-(12) represent the bounds for the
variables in the Cartesian and Polar coordinate system, while constraint (13) imposes bounds
on the variable R. We would stress here that in our formulation the prohibited areas need not
be connected together, and there can be as many of them as we wish.

In the formulation presented above it is clear that Equations (9) and (10), which impose
bounds on the Cartesian coordinates, can be deduced from Equation (2). We have presented
these bounds here however for completeness. A similar remark applies to the upper limit on the
Polar radius in Equation (11), which can be deduced from Equation (3).

We would mention here that there is an alternative approach to specifying the non-overlapping
conditions (Equations (4)-(8)) seen above based on that presented in Birgin and Sobral [3]. This
involves replacing the (numerous) individual non-overlapping constraints by a single constraint
involving the summation of maximisation terms. We did investigate that approach, but were
unable to successfully implement it. This was due to software limitations, in particular with re-
gard to incorporating the summation of maximisation terms within a constraint in the nonlinear
solver (SNOPT [9,15]) which we used.

4 Heuristic

The heuristic developed is an iterative procedure that uses FSS. At each iteration we first define
a new formulation of the problem; then solve it using a nonlinear solver (SNOPT [9, 15]); then
apply a correction step to account for possible numerical inaccuracies. Our FSS heuristic is an
extension of that given in [20], which itself built upon the earlier work of [25,26].

4.1 Formulation

Suppose that we have current Cartesian coordinate positions for the n circles given by (Xi, Yi) i =
1, . . . , n. We first restrict the problem such that circles i ∈ C cannot be positioned more than
a user defined distance ∆ from their current position in a horizontal or vertical direction when
we come to resolve the problem. To achieve this we add to the formulation given previously the
constraints:

Xi −∆ ≤ xi ≤ Xi +∆, ∀i ∈ C (14)

Yi −∆ ≤ yi ≤ Yi +∆, ∀i ∈ C (15)

Stoyan et al [30] use similar constraints to Equations (14)-(15), but in the context of packing
ellipses. We have also used similar constraints in [19,20]. Based on work presented in [19,20] we
only restrict the positions of circles whose centres are expressed in Cartesian coordinates. This

7

allows additional flexibility for the positioning of circles whose centres are expressed in Polar
coordinates.

Now given the above restriction on the movement of circle centres for circles i ∈ C it is a
simple matter to update the set Q of circle pairs to eliminate from that set any pairs of circles
(i, j) which, because of the restriction on the movement of the centres of i ∈ C and j ∈ C (and
the restriction Roverall on maximum circle size), can never overlap. This enables us to have fewer
constraints when we come to solve our formulation. In the same manner we can also update the
set Q∗ of circle pairs to eliminate from that set any pairs of circles (i, f) which, because of the
restriction on the movement of the centre of i ∈ C, can never overlap.

As will become apparent in the pseudocode given below, we also at each iteration randomly
allocate circles i, i = 1, . . . , n to C or P (by for each circle i in turn taking a random number
from the uniform distribution [0, 1] and assigning circle i to C if the random number is 0.5 or
less, assigning it to P otherwise).

At each iteration therefore this perturbation of the circles assigned to C and P , together with
the additional constraints (Equations (14)-(15)) on movement, means that we have a different

nonlinear formulation of the problem to solve.
We commented before that FSS is distinctly different from repeatedly resolving a single

formulation with different random starting solutions. Rather FSS, by considering different for-
mulations of the same problem, here for example as we change the sets C and P at each iteration,
potentially provides more opportunities to obtain good solutions.

Note here that our formulation will give a heuristic result because of the constraints on the
movement of circle centres. But the logic here is that we cannot realistically expect to solve the
original problem to global optimality anyway, so imposing such constraints (reducing the size
of the problem, here by reducing the size of both Q and Q∗, thereby reducing the number of
constraints that need be considered, Equations (4)-(8)) may have computational benefits. In fact,
as discussed later below, our computational experience has been that introducing Equations (14)-
(15) does significantly improve the quality of the results that we obtain.

We solve our formulation of the problem as presented in Equations (1)-(15), denoted as
NLP (C,P) in the pseudocode given below, using the nonlinear solver SNOPT [9,15].

4.2 Correction procedure

Even though the result given by the nonlinear solver has a high degree of accuracy we have
included a correction procedure to avoid numerical inaccuracies. In the literature (e.g. see [29])
solutions to circle packing problems are typically given to a high degree of numeric accuracy and
as such it is appropriate to regard the circle centre coordinates as given by the nonlinear solver
as fixed and to adjust the circle radius R to ensure that all constraints are satisfied to a high
degree of numeric accuracy. Simply taking the value for R as output by the solver may not be
sufficient. Issues related to numeric accuracy (in the absence of a correction procedure such as
that outlined below) become particularly acute as n increases and the circles are packed closer
and closer together.

As we are solving the circle packing problem with prohibited areas all solutions must satisfy
three conditions: no circles overlap with a prohibited area, all circles are inside the circular
container and no overlapping circles. Setting a value for R to ensure that these three conditions
are met is easily done and so, for space reasons, we omit details here. Examples of correction
procedures can be found in our earlier work [19–21].

8

We would stress here that applying a correction procedure is especially important in circle
packing since there are examples in the literature, e.g. [3] as noted in [2], where the results given
are invalid due to a lack of sufficient precision. In the computational implementation of our
correction procedure we used a MATLAB function called vpa (which is the acronym for variable
precision arithmetic) that gives as many digits of accuracy as we desire. Note though that we
use default machine precision in all other computations.

4.3 Pseudocode

The pseudocode is shown in Algorithm 1. The first initial solution is generated randomly inside
the container, in our case the unit circle, by choosing ri uniformly from the interval [0, 1] and
θi uniformly from interval [0, 2π] and expressing their respective values in Cartesian coordinates
(Xi, Yi). At each iteration after updating the sets Q and Q∗ we solve the nonlinear program
(Equations (1)-(15)) using SNOPT [9, 15]. We correct the resulting radius to R∗ and update
the best radius found (Rbest) accordingly. We also update the value for ∆, where we set it to
2
3R

∗, so relate it to the value of the current solution. This value of 2
3 was based on limited

computational experimentation carried out as reported in [19]. We then update the iteration
counter, the current solution and the circle sets C and P and repeat until termination. Note
here that we update the current solution even if the solution has not improved as compared with
the preceding solution.

In the computational results reported below the termination criteria was set to 80 itera-
tions and we performed 25 replications, reporting the best (maximum) radius found over all
replications. This means that for each value of n examined we solve 80(25) = 2000 nonlinear
programs.

Algorithm 1 Pseudocode for the heuristic

Initialisation:

t← 0; Rbest ← 0; ∆← 2
3Roverall

Randomly generate an initial solution (Xi, Yi) i = 1, . . . , n
while not termination condition do

Update Q and Q∗ {Update the sets of pairs}
(x, y,R)← Solve NLP (C,P) {Solve the formulation}
R∗ ← value after correction {Correct the radius}
Rbest ← max{Rbest, R

∗} {Update the best radius Rbest}
∆← 2

3R
∗ {Update ∆}

t← t+ 1 {Update the iteration counter}
(X,Y)← (x, y) {Update the current solution}
Update C and P {Update the circle sets by randomly allocating circles to C or P}

end while

5 Computational results

The results presented in this section for our FSS heuristic were produced on an Intel(R) Core(TM)
i5-2500 3.30GHz CPU with 4GB of memory. The algorithm was coded in MATLAB 7.9.0 using

9

SNOPT [9, 15] as the nonlinear solver. We considered six different test problems, where the
details of the prohibited areas associated with each test problem can be found in Table 1.

In Table 1 test problem 1 has a single prohibited area made up from the union of circles
of different sizes. Test problems 2-5 are annular containers, which have a single inner circular
prohibited area. Test problem 6 has prohibited areas that are disconnected. Note here that given
Table 1 future workers will be able to compare their results against ours for the same set of test
problems as we have used. For each of these six test problems we considered instances with
n = 10, 20, ..., 100 circles. Each value of n considered was solved independently, in particular we
do not use any information from the solution for packing n circles (as found by our heuristic)
to assist in creating the solution for packing n+ 10 circles (or vice-versa).

In Table 2 we present the results obtained for test problems 2-5. These are all cases for
which we have just a single circular prohibited area. In that table we show, for each value of n
considered, the best (maximum) radius found over all replications, together with the total time
(in seconds) for all replications. In general, considering that for each value of n we have to solve
2000 nonlinear programs, we can say that the total time required appears reasonable.

In Figures 2(a)-2(d) we show visually the results for test problems 2-5 with n = 50; and in
Figures 3(a)-3(d) the results for n = 100. These appear very reasonable, with the circles being
closely packed around the prohibited area.

As can be seen from Table 1 test problems 2 and 3 both have a single prohibited area, namely
one circle with radius (1/10.5). The difference between them relates to where in the unit circle
container this single prohibited area is positioned (cf Figures 2(a) and 2(b); Figures 3(a) and
3(b)). Since the area of the unit circle container that can be used (i.e. the non-prohibited area)
is hence the same in both cases it might seem reasonable to suppose that, when we attempt to
maximise the radius of n identical packed circles, the best radius found and the time required
would be similar for this pair of test problems (for each value of n).

For test problems 2 and 3 the average absolute difference between the best radii is 0.00216184,
so very small. As a percentage of the average radius for test problem 2 this difference is only
1.58%, and as a percentage of the average radius for test problem 3 this difference is only 1.56%.
However the average time required for test problem 2 is 127.07 seconds, whereas for test problem
3 it is much larger, 303.31 seconds. These results therefore indicate that (for our FSS algorithm)
the position of the prohibited area has a significant effect on computation time.

In a similar fashion, as can be seen from Table 1, test problems 4 and 5 both have a single
prohibited area, namely one circle with radius (10.25/17.5). The difference between them relates
to where in the unit circle container this single prohibited area is positioned (cf Figures 2(c)
and 2(d); Figures 3(c) and 3(d)). So again it might seem reasonable to suppose that, when we
attempt to maximise the radius of n identical packed circles, the best radius found and the time
required would be similar for this pair of test problems (for each value of n).

For these test problems the average absolute difference between the best radii is 0.00254764,
so again very small. As a percentage of the average radius for test problem 4 this difference is
only 2.37%, and as a percentage of the average radius for test problem 5 this difference is only
2.35%. However the average time required for test problem 4 is 88.72 seconds, whereas for test
problem 5 it is much larger, 499.56 seconds. These results therefore again indicate that (for our
FSS algorithm) the position of the prohibited area has a significant effect on computation time.

To investigate how our FSS approach performed when we had more than one circular pro-
hibited area we used test problem 1, but varied the number of circles |F | in the prohibited area.
The results can be seen in Table 3 and Table 4. Here we again show the best (maximum) radius

10

Table 1: Centre coordinates and radii of the prohibited areas

Test problem Circle Centre x-coordinate Centre y-coordinate Radius

1 1 -9.8/15 6.3/15 1.3/15
2 -8.2/15 6.5/15 1.1/15
3 -6.5/15 6.5/15 1.4/15
4 -6.0/15 5.5/15 1.3/15
5 -5.0/15 4.0/15 1.25/15
6 -4.5/15 2.0/15 1.5/15
7 -4.0/15 0.5/15 1.25/15
8 -3.5/15 -1.0/15 1.35/15
9 -2.8/15 2.7/15 1.2/15
10 -6.3/15 1.7/15 1.2/15
11 -1.3/15 3.7/15 1.2/15

2 1 0 0 1/10.5

3 1 0 (1/10.5)-1 1/10.5

4 1 0 0 10.25/17.5

5 1 0 (10.25/17.5)-1 10.25/17.5

6 1 0 (1/10.5)-1 1/10.5
2 0 1-(1/10.5) 1/10.5
3 (1/10.5)-1 0 1/10.5
4 1-(1/10.5) 0 1/10.5

found and the total time taken (in seconds). The results in Table 3 for |F | = 6, for example,
correspond to using just the first six circles associated with that test problem (the size and
position of these circles being given in Table 1).

In Figures 2(e)-2(l) we show visually the results for n = 50 and test problem 1 as |F | varies.
Figures 3(e)-3(l) show the results for n = 100. Note from these figures that the prohibited area
for test problem 1, composed of |F | circles, is overall irregular in shape (but always connected).

Table 3 and Table 4 indicate that the average computation time increases as |F | increases,
as we might expect. However the increase is not especially marked, the minimum average
computation time in those tables is 392.21 seconds associated with |F | = 5, whilst the maximum

11

average computation time is 651.76 seconds associated with |F | = 10.
Visually it is clear from comparing the results for test problems 2-5 with those for test

problem 1 that the results for test problem 1 exhibit more unused space, principally around the
irregular prohibited area. However the portion of the circular container that does not involve
the prohibited area is relatively closely packed with circles.

The reason, we believe, why these results exhibit unused space around the irregular prohib-
ited area is that as n increases the predominant factor in maximising radius becomes the packing
of the circles in the region away from the prohibited area. For example consider Figure 3(l) with
n = 100 circles. First recall that the number of circles is fixed, so we cannot fill the unused space
seen in that figure with extra circles of the same radius as those already shown in Figure 3(l).
Increasing, by even a small amount, the (equal) radii of the circles shown, will clearly be difficult
for the closely packed circles away from the prohibited region (even allowing for the fact that
all circles can be resized and repositioned).

As mentioned above, our computational experience has been that introducing Equations (14)-
(15) does significantly improve the quality of the results that we obtain. As an illustration of
this we solved all problems (from n = 10 to n = 30, test problems 1-5) both with, and without,
Equations (14)-(15). Overall, when solving with Equations (14)-(15) included, the average
computation time was 33.5% lower and the average best radius 12.8% higher , as compared
with the situation when these equations were not included. In other words we (on average) obtain
much better results, both with respect to computation time and with respect to the value of
the best radius found, when we include Equations (14)-(15). This vindicates, we believe, our
algorithmic design decision to include Equations (14)-(15).

With regard to test problem 6 Table 5 shows the results obtained. In Figures 4(a)-4(b) we
show visually the results for that test problem with n = 50 and n = 100. It can be seen that
in this particular instance we have four disconnected prohibited areas. Again the results appear
reasonable, with the circles being closely packed around the prohibited areas.

6 Conclusions

In this paper we have considered the problem of packing a fixed number of identical circles
inside the unit circle container, where the packing was complicated by the presence of fixed size
circular prohibited areas. The objective we adopted was to maximise the radius of the identical
circles.

We considered six different test problems, one with a single prohibited area being the union
of circles of different sizes, four being different annular containers and one where the prohibited
areas were disconnected.

We presented a heuristic for the problem based upon formulation space search, a new and
emerging metaheuristic. Computational results were given for problems involving the packing
of up to 100 circles.

12

Table 2: FSS results for test problems 2-5

Test problem 2 Test problem 3 Test problem 4 Test problem 5
n Best radius Total time (s) Best radius Total time (s) Best radius Total time (s) Best radius Total time (s)
10 0.25060817 18.25 0.26225892 64.95 0.20714286 12.73 0.20620478 193.20
20 0.19039215 28.62 0.19522401 72.58 0.14044117 20.22 0.14956309 229.56
30 0.15919784 46.30 0.15979391 136.80 0.11926162 29.70 0.12434830 340.39
40 0.13742599 60.15 0.13930887 170.70 0.11078813 44.56 0.10879452 246.51
50 0.12471293 99.35 0.12517615 210.50 0.10055446 66.65 0.09792755 377.35
60 0.11545614 103.10 0.11545599 261.50 0.08859160 81.85 0.08984271 304.23
70 0.10533517 156.50 0.10605514 309.20 0.08215214 104.03 0.08377036 733.21
80 0.09972555 205.90 0.09916911 454.00 0.07827693 139.87 0.07865683 663.07
90 0.09460328 237.40 0.09370228 587.50 0.07473140 170.12 0.07429912 922.83
100 0.08899120 315.10 0.08900724 765.40 0.07239415 217.44 0.07036645 985.28

Table 3: FSS results for test problem 1 with |F | varying from 4 to 7

|F | = 4 |F | = 5 |F | = 6 |F | = 7
n Best radius Total time (s) Best radius Total time (s) Best radius Total time (s) Best radius Total time (s)
10 0.25725385 262.81 0.25725385 232.91 0.25725385 271.90 0.25725385 284.46
20 0.18800266 261.32 0.18590633 289.80 0.18531662 247.60 0.18531515 446.41
30 0.15561785 292.92 0.15589953 296.77 0.15398348 309.10 0.15252655 489.18
40 0.13597134 250.93 0.13494222 210.46 0.13301332 237.80 0.13273445 404.74
50 0.12225672 254.90 0.12083527 267.85 0.12021850 285.80 0.12068548 357.89
60 0.11019235 316.74 0.11030502 296.81 0.10935882 433.90 0.10898846 429.68
70 0.10343522 420.70 0.10268332 450.44 0.10153295 461.80 0.10066682 500.23
80 0.09611034 543.14 0.09631517 605.45 0.09448850 625.00 0.09262220 703.18
90 0.09201990 532.95 0.09149489 544.22 0.08825820 626.40 0.08757232 787.02
100 0.08683729 844.48 0.08651290 727.39 0.08464148 983.10 0.08446274 980.21

Table 4: FSS results for test problem 1 with |F | varying from 8 to 11

|F | = 8 |F | = 9 |F | = 10 |F | = 11
n Best radius Total time (s) Best radius Total time (s) Best radius Total time (s) Best radius Total time (s)
10 0.25582765 277.31 0.25297675 245.78 0.25213340 280.58 0.24958389 249.10
20 0.18395004 318.46 0.18278297 379.61 0.18145427 402.61 0.17857572 390.90
30 0.15253463 473.42 0.15100605 502.87 0.15099462 632.30 0.14944660 685.50
40 0.13238624 322.10 0.13150801 316.52 0.12939828 415.40 0.12945512 379.90
50 0.11841380 363.05 0.11776737 372.58 0.11879430 557.99 0.11775790 466.00
60 0.10685984 343.93 0.10841268 412.69 0.10596339 518.94 0.10633808 482.20
70 0.09940636 430.45 0.09976116 511.19 0.09981981 688.71 0.09842435 635.50
80 0.09187960 520.99 0.09130728 562.96 0.09215045 811.07 0.09195809 774.40
90 0.08838363 670.41 0.08841618 964.66 0.08515947 1145.45 0.08674741 785.40
100 0.08353399 770.81 0.08299581 1169.21 0.08350246 1064.56 0.08286614 1184.00

13

Table 5: FSS results for test problem 6

n Best radius Total time (s)
10 0.26018588 122.90
20 0.18808326 133.40
30 0.15423705 232.40
40 0.13318076 194.00
50 0.11909887 299.60
60 0.10972674 440.00
70 0.09834932 607.90
80 0.09429742 928.70
90 0.08940553 737.40
100 0.08427842 962.60

14

Figure 2: FSS results for packing 50 identical circles in a circular container for test problems 1-5

1

2
3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18
19

20
21

22

23

24
25

26

27

28

29

30

31

32
33

34

35

36

37

38

39

40

41

42

43

44

45
46

47

48

49

50

(a) Test problem 2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35 36
37

38

39

40

41

42

43

44

45

46

47

48

49

50

(b) Test problem 3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

(c) Test problem 4

1

2

3

4

56
7

8

9

10

11

12

13

14

15

16

17

18
19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

(d) Test problem 5

1

2

3

4

5
6

7

8

9

10

11

12

13

14
15

16

17

18

19

20

21
22

23

24

25

26

27
28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

(e) Test problem 1, |F | = 4

1

2

3

4

5

6

7

8

9

10

11

12

13
14

15

16

17

18

19

20

2122

23

24

25

26
27

28

29

30

31

32

33

34

35

3637

38

39

40

41

42

43

44

45

46

47

48

49

50

(f) Test problem 1, |F | = 5

1

23

4

5

6

7

8
9

10

11

12

13

14

15
16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

(g) Test problem 1, |F | = 6

1
2

3

4

5

6

7

89

10

11

12

13

14

15 16

17 18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

(h) Test problem 1, |F | = 7

1

2

3

4

5

6

7

8

9

10
11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48
49

50

(i) Test problem 1, |F | = 8

1

2

3

4 5

6

7

8

9

10
11

12

13

14

15

16

17

18

19

20

21

2223

24

25

26

27

28

29

30

31

32

33
34

35

36

37
38

39

40

41

42

43

4445

46

47 48

49

50

(j) Test problem 1, |F | = 9

1

2

3

4

5

6

7

8
9

10

11

12

13

14

15
16

17

18

19

20

21

2223

24 25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

(k) Test problem 1, |F | = 10

1

2

3

4

5

6

7

89

10

11

12

13
14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39
40

41

42

43

44

45

46

47

48

49

50

(l) Test problem 1, |F | = 11

15

Figure 3: FSS results for packing 100 identical circles in a circular container for test problems 1-5

1
2

3

4
5

6

7

8
9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38
39

40

41

42

43

44

45

46

47

48

49

50

51

5253

54

55

5657
58

59

60

61

62

63

64

65

66

67

68 69

70

71

72

73

74

75

76

77
78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

9495

96

97

98

99

100

(a) Test problem 2

12

3

4

5

6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

21

22

23

24
25

26
27

28

29
30

31

32
33

34

35

36

37

38
39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58 59

60

61

62

63
64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

8283

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

(b) Test problem 3

1

2

3

4

5
6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28
29

30

31

32

33

3435

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52
5354

55

56

57

58

59

60

61

62

63

64
65

66

67

6869

70

71

72

73

74

75

76

77

78

79

80

81
82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

(c) Test problem 4

1

2

3

4

5

6

7

8

9

10

11
12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29
30

31

32

33

34

35

36
37

38

39

40

41

42

43

44

45
46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66
67

68
69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97
98

99

100

(d) Test problem 5

1

2
3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35
36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

6465

6667

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88 89

90

91

92

93

94

95

96

97

98

99

100

(e) Test problem 1, |F | = 4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27 28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47
48

49

50

51

52

53

54

55

56

57

58

59

60

61
62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

9596

97

98

99

100

(f) Test problem 1, |F | = 5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33
34

35

36

37

38

39

40

41

42

43

44

45
46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79 80

81

82

83

84

85

86

87

88

89

90

91

92

93
94

95

96

97

98

99

100

(g) Test problem 1, |F | = 6

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23
24

25

26

27

28

29

30

31

32

33

34 35

36

37

38

39

40
41

42

43

44

45

46

47

4849
50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66
67

68

69

70

71

72
73

74

75

76

77

78

79
80

81

82

83

84

85

86

87

88

89

90

91
92

93

94

95

96

97

98

99

100

(h) Test problem 1, |F | = 7

1

2

3

4

5

6

7

8

9

10

11
12

13

14

15

16
17

18
19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

4647

48

49

50

51

52

53

54

55 56

57

58

59

60

61

62

63

64

65

66

67

68

69
7071

72

73

74

75

76
77

78

79

80

81

82 83

84
85

86

87

88

89

90
91

92

93

94

95

96

97

98

99

100

(i) Test problem 1, |F | = 8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25
26

27

28

29
30

31

32

33

34

35

36

37

38 39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59
60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75
76

77

78

79

80

81

82
83

84

85

86

87

88

89

90

91

92

93

94

95
96

97

98

99

100

(j) Test problem 1, |F | = 9

1

2

3

4

5

6
7

8

9

10

11

1213
14

15

16

17

18

19

20

21

22

23

24

2526

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

4748

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63
64

65

66

67

68

69

70

71

72

7374

75

76

77

78
79

80

81

82

83

84

85

86

87 88

89

90

91

92

93

94
95

96

97

98

99

100

(k) Test problem 1, |F | = 10

1

2

3

4

5

6

7
8

9

10

11

12

13
14

15

16

17

18

19

20

21

22

23
24

25

26
27

28

29

30

31

3233

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60 61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

(l) Test problem 1, |F | = 11

16

Figure 4: FSS results for test problem 6, packing 50 and 100 identical circles in a circular
container with disconnected prohibited areas

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19 20

21

22

23

24

25

26

27

28

29
30

31
32

33

34

35
36

37

38

39

40

41

42

43

44

45

46

47

48
49

50

(a) n = 50

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

1819

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61
62

63

64

65

66

67

68

69

70

71

72

73

74

75
76

77

78

79

80

81

82
83

84

85

8687

88

89

90

91

92

93

94

95

96

97

98

99

100

(b) n = 100

17

Acknowledgments

The first author has grant support from the programme UNAM-DGAPA-PAPIIT-IA106916

References

[1] Amirgaliyeva Z, Mladenović N, Todosijević R, Urosević D. Solving the maximum min-
sum dispersion by alternating formulations of two different problems. European Journal of
Operational Research 2017;260(2):444–459.

[2] Birgin EG, Gentil JM. New and improved results for packing identical unitary radius circles
within triangles, rectangles and strips. Computers & Operations Research 2010;37(7):1318–
1327.

[3] Birgin EG, Sobral FNC. Minimizing the object dimensions in circle and sphere packing
problems. Computers & Operations Research 2008;35(7):2357–2375.

[4] Brimberg J, Drezner Z, Mladenović N, Salhi S. A new local search for continuous location
problems. European Journal of Operational Research 2014;232(2):256–265.

[5] Butenko S, Yezerska O, Balasundaram B. Variable objective search. Journal of Heuristics
2013;19(4):697–709.

[6] Castillo I, Kampas FJ, Pinter JD. Solving circle packing problems by global optimization:
Numerical results and industrial applications. European Journal of Operational Research
2008;191(3):786–802.

[7] Duarte A, Pantrigo JJ, Pardo EG, Sánchez-Oro J. Parallel variable neighbourhood search
strategies for the cutwidth minimization problem. IMA Journal of Management Mathemat-
ics 2016;27(1):55–73.

[8] Erromdhani R, Jarboui B, Eddaly M, Rebai A, Mladenović N. Variable neighborhood formu-
lation search approach for the multi-item capacitated lot-sizing problem with time windows
and setup times. Yugoslav Journal of Operations Research 2017;27(3):310–322.

[9] Gill PE, Murray W, Saunders MA. User’s guide for SNOPT version
7: Software for large-scale nonlinear programming. 2008. Available at
http://web.stanford.edu/group/SOL/guides/sndoc7.pdf. Last accessed June 14 2018.

[10] Hansen P, Mladenović N, Brimberg J, Perez JAM. Variable neighborhood search, in Gen-
dreau M. and Potvin J.-Y. (eds), Handbook of Metaheuristics, Springer. International Series
in Operations Research & Management Science 2010;146:61–86.

[11] Hansen P, Mladenović N, Todosijević T, Hanafi S. Variable neighborhood search: basics
and variants. EURO Journal on Computational Optimization 2017;5(3):423–454.

[12] Hertz A, Plumettaz M, Zufferey N. Variable space search for graph coloring. Discrete Ap-
plied Mathematics 2008;156(13):2551–2560.

http://web.stanford.edu/group/SOL/guides/sndoc7.pdf

[13] Hertz A, Plumettaz M, Zufferey N. Corrigendum to “Variable space search for graph
coloring” [Discrete Appl. Math. 156 (2008) 2551-2560]. Discrete Applied Mathematics
2009;157(7):1335–1336.

[14] Hifi M, M’Hallah R. A literature review on circle and sphere packing problems: models
and methodologies. Advances in Operational Research 2009;Article ID 150624, 22 pages,
doi:10.1155/2009/150624.

[15] Holmström K, Göran AO, Edvall MM. User’s guide for TOMLAB/SNOPT. 2008. Available
at http://tomopt.com/docs/TOMLAB SNOPT.pdf. Last accessed June 14 2018.

[16] Huang WQ, Ye T. Greedy vacancy search algorithm for packing equal circles in a square.
Operations Research Letters 2010;38(5):378–382.

[17] Kochetov Y, Kononova P, Paschenko M. Formulation space search approach for the
teacher/class timetabling problem. Yugoslav Journal of Operations Research 2008;18(1):1–
11.

[18] Li Y, Akeb H. Basic heuristics for packing a great number of equal circles, 2005. Working
paper available from the second author at ISC Paris Business School, 22, Bd du Fort de
Vaux, 75017 Paris, France.

[19] López CO. Formulation space search for two-dimensional packing problems. PhD thesis,
Brunel University, UK (2013).

[20] López CO, Beasley JE. A heuristic for the circle packing problem with a variety of contain-
ers. European Journal of Operational Research 2011;214(3):512–525.

[21] López CO, Beasley JE. Packing unequal circles using formulation space search. Computers
& Operations Research 2013;40(5):1276–1288.

[22] López CO, Beasley JE. A note on solving MINLP’s using formulation space search. Opti-
mization Letters 2014;8(3):1167–1182.

[23] López CO, Beasley JE. A formulation space search heuristic for packing unequal circles in a
fixed size circular container. European Journal of Operational Research 2016;251(1):64–73.

[24] López CO, Beasley JE. Packing unequal rectangles and squares in a fixed size circular
container using formulation space search. Computers & Operations Research 2018;94:106–
117.

[25] Mladenović N, Plastria F, Urošević D. Reformulation descent applied to circle packing
problems. Computers & Operations Research 2005;32(9):2419–2434.

[26] Mladenović N, Plastria F, Urošević D. Formulation space search for circle packing problems.
In “Engineering Stochastic Local Search Algorithms. Designing, Implementing and Analyz-
ing Effective Heuristics”, Proceedings of the International Workshop, SLS 2007, Brussels,
Belgium, September 6-8, 2007. Lecture Notes in Computer Science volume 4638, 2007,
pages 212–216.

http://tomopt.com/docs/TOMLAB_SNOPT.pdf

[27] Pardo EG, Mladenović N, Pantrigo JJ, Duarte A. Variable formulation search for the
cutwidth minimization problem. Applied Soft Computing 2013;13(5):2242–2252.

[28] Pedroso JP, Cunha S, Tavares JN. Recursive circle packing problems. International Trans-
actions in Operational Research 2016;23(1-2):355–368.

[29] Specht E. Packomania (2010). Available at http://www.packomania.com. Last accessed
June 14 2018.

[30] Stoyan Y, Pankratov A, Romanova T. Quasi-phi-functions and optimal packing of ellipses.
Journal of Global Optimization 2016;65(2):283–307.

[31] Stoyan Y, Yaskov G. Packing equal circles into a circle with circular prohibited areas.
International Journal of Computer Mathematics 2012;89(10):1355–1369.

[32] Stoyan Y, Yaskov G. Packing congruent hyperspheres into a hypersphere. Journal of Global
Optimization 2012;52(4):855–868.

[33] Stoyan YG, Zlotnik MV, Chugay AM. Solving an optimization packing problem of circles
and non-convex polygons with rotations into a multiply connected region. Journal of the
Operational Research Society 2012;63(3):379–391.

[34] Szabó PG, Markót MC, Csendes T, Specht E, Casado LG, Garcia I. New approaches to
circle packing in a square: with program codes. Springer Optimization and its Applications,
Volume 6, 2007.

[35] Wang H, Huang W, Zhang Q, Xu D. An improved algorithm for the packing of un-
equal circles within a larger containing circle. European Journal of Operational Research
2002;141(2):440–453.

[36] Wieman H. SSD cable packing, 2008. Available at
http://www-rnc.lbl.gov/∼wieman/SSD packing combined.pdf. Last accessed June 14 2018.

[37] Zhuang XY, Yan L, Chen L. Packing equal circles in a damaged square. 2015 International
Joint Conference on Neural Networks (IJCNN), pages 1–6. IEEE, 345 E 47th Street, New
York, NY10017 USA.

http://www.packomania.com
http://www-rnc.lbl.gov/$\sim $wieman/SSD~packing~combined.pdf

	1 Introduction
	2 Literature survey
	2.1 Circle packing with prohibited areas
	2.2 Applications
	2.3 Formulation space search (FSS)

	3 Formulation
	4 Heuristic
	4.1 Formulation
	4.2 Correction procedure
	4.3 Pseudocode

	5 Computational results
	6 Conclusions

