Skip to main content
Log in

Derivative free methodologies for circuit worst case analysis

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this paper, a new derivative-free method for Worst Case Analysis (WCA) of circuit design is defined. A WCA of a device can be performed by solving a particular minimization problem where the objective function values are obtained by a simulation code and where some variables are subject to a spherical constraint and others to box constraints. In order to efficiently tackle such a problem, the paper defines a new DF algorithm which follows a two blocks Gauss Seidel approach, namely it alternates an approximated minimization with respect to the variables subject to the spherical constraint with an approximated minimization respect to the variables subject to the box constraints. The algorithm is described and its global convergence properties are analyzed. Furthermore it is tested in the WCA of a MOSFET operational amplifier and its computational behaviour is compared with the one of the efficient optimization tool of the WiCkeD suite for circuit analysis. The obtained results seem to indicate that the proposed algorithm is promising in terms of average efficiency, accuracy and robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abramson, M.A., Audet, C., Dennis Jr., J.E., Digabel, S.: Orthomads: a deterministic mads instance with orthogonal directions. SIAM J. Optim. 20(2), 948–966 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allen, P.E., Holberg, D.R.: CMOS Analog Circuit Design. Oxford University Press, Oxford (2010)

    Google Scholar 

  3. Antreich, K., Eckmueller, J., Graeb, H., Pronath, M., Schenkel, F., Schwencker, R., Zizala, S.: WiCkeD: analog circuit synthesis incorporating mismatch. In: Proceedings of the IEEE Custom Integrated Circuits Conference, pp. 511–514 (May 2000)

  4. Audet, C., Dennis Jr., J.E.: A progressive barrier for derivative-free nonlinear programming. SIAM J. Optim. 20(1), 445–472 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms. Wiley, Hoboken (2013)

    MATH  Google Scholar 

  6. Bertsekas, B.P.: Nonlinear Programming. Athena Scientific, Belmont (1999)

    MATH  Google Scholar 

  7. Cadence Design Systems GmbH: Virtuoso spectre circuit simulator and accelerated parallel simulator user guide. In: Product Version 13.1.1, (April 2014). https://www.cadence.com

  8. Ciccazzo, A., Di Pillo, G., Latorre, V., et al.: A SVM Surrogate Model Based Method for Yield Optimization in Electronic Circuit Design. Technical Report, Department of Computer, Control and Management Engineering, Universita’degli Studi di Roma“ La Sapienza” (2015)

  9. Ciccazzo, A., Latorre, V., Liuzzi, G., Lucidi, S., Rinaldi, F.: Derivative-free robust optimization for circuit design. J. Optim. Theory Appl. 164(3), 842–861 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to Derivative-Free Optimization, vol. 8. SIAM, Philadelphia (2009)

    Book  MATH  Google Scholar 

  11. Eshbaugh, K.S.: Generation of correlated parameters for statistical circuit simulation. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 11(10), 1198–1206 (1992)

    Article  Google Scholar 

  12. Fasano, G., Liuzzi, G., Lucidi, S., Rinaldi, F.: A linesearch-based derivative-free approach for nonsmooth constrained optimization. SIAM J. Optim. 24(3), 959–992 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gao, W., Hornsey, R.: A power optimization method for CMOS Op-Amps using sub-space based geometric programming. In: Proceedings of the IEEE Conference on Design, Automation and Test in Europe, pp. 508–513 (March 2010)

  14. Gielen, G.G.E., Walscharts, H.C.C., Sansen, W.M.C.: Analog circuit design optimization based on symbolic simulation and simulated annealing. IEEE J. Solid State Circuits 25(3), 707–713 (1990)

    Article  Google Scholar 

  15. Graeb, H.: Analog Design Centering and Sizing, Chapter 5, pp. 90–99. Springer, Berlin (2007)

    Google Scholar 

  16. Kesidis, G.: Analog optimization with Wong’s stochastic neural network. IEEE Trans. Neural Netw. 6(1), 258–260 (1995)

    Article  Google Scholar 

  17. Kolda, T.G., Lewis, R.M., Torczon, V.: Optimization by direct search: new perspectives on some classical and modern methods. SIAM Rev. 45(3), 385–482 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kundert, K., Chang, H., Jefferies, D., Lamant, G., Malavasi, E., Sendig, F.: Design of mixed-signal systems-on-a-chip. IEEE Trans. Comput. Aided Des. Integr. Circuits 19(12), 1561–1571 (2000)

    Article  Google Scholar 

  19. Lucidi, S., Sciandrone, M.: A derivative-free algorithm for bound constrained optimization. Comput. Optim. Appl. 21(2), 119–142 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lucidi, S., Sciandrone, M.: On the global convergence of derivative-free methods for unconstrained optimization. SIAM J. Optim. 13(1), 97–116 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lucidi, Stefano, Sciandrone, Marco, Tseng, Paul: Objective-derivative-free methods for constrained optimization. Math. Program. 92(1), 37–59 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. MunEDA GmbH: Manual for WiCkeD 6.7 (2014). https://www.muneda.com

  23. Morshed, T.H., et al.: BSIM4v4. 7 MOSFET model. Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, USA, Technical Report (2011)

  24. Nye, W., Riley, D., Sangiovanni-Vincentelli, A., Tits, A.: DELIGHT.SPICE: an optimization-based system for the design of integrated circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits 7, 501–519 (1988)

    Article  Google Scholar 

  25. Powell, M.J.D.: A direct search optimization method that models the objective and constraint functions by linear interpolation. In: Advances in Optimization and Numerical Analysis, pp. 51–67. Springer (1994)

  26. Somani, A., Chakrabarti, P.P., Patra, A.: An evolutionary algorithm-based approach to automated design of analog and RF circuits using adaptive normalized cost functions. IEEE Trans. Evol. Comput. 11(3), 336–353 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vittorio Latorre.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latorre, V., Habal, H., Graeb, H. et al. Derivative free methodologies for circuit worst case analysis. Optim Lett 13, 1557–1571 (2019). https://doi.org/10.1007/s11590-018-1364-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-018-1364-5

Keywords

Navigation