Skip to main content
Log in

Metric subregularity and/or calmness of the normal cone mapping to the p-order conic constraint system

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

For a finite convex function, we show that its subdifferential mapping is metrically subregular if and only if the normal cone mapping to its epigraph is metrically subregular. Then, for the nonconvex composition \(\psi =\theta \circ G\) where G is a continuously differentiable mapping and \(\theta \) is an extended real-valued function, we develop a criterion to identify the metric subregularity and calmness of the subdifferential mapping of \(\psi \) in terms of that of the subdifferential mapping of \(\theta \). Together with the existing results, we obtain the metric subregularity of the normal cone mapping to the vector and matrix p-order cone \(K_p\) and the conic constraint system \(g^{-1}(K_p)\) with \(p\in [1,2]\cup \{+\infty \}\), where g is a continuously differentiable mapping. We also establish the calmness of the normal cone mapping to \(K_p\) and \(g^{-1}(K_p)\) with \(p\in [2,+\infty ]\cup \{1\}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aragón Artacho, F.J., Geoffroy, M.H.: Characterization of metric regularity of subdifferentials. J. Convex Anal. 15, 365–380 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)

    Book  MATH  Google Scholar 

  3. Chan, Z.X., Sun, D.F.: Constraint nondegeneracy, strong regularity, and nonsingularity in semidefinite programming. SIAM J. Optim. 19, 370–396 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Clarke, F.H.: Optimization and Nonsmooth Analysis. SIAM, Philadelphia (1990)

    Book  MATH  Google Scholar 

  5. Cui, Y., Ding, C., Zhao, X.Y.: Quadratic growth conditions for convex matrix optimization problems associated with spectral functions. SIAM J. Optim. 27, 2332–2355 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Da Costa, A.P., Seeger, A.: Numerical resolution of cone-constrained eigenvalue problems. Comput. Appl. Math. 28, 37–61 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings—A View from Variational Analysis. Springer, Berlin (2009)

    MATH  Google Scholar 

  8. Eldar, Y.C., Kuppinger, P., Bolcskei, H.: Block-sparse signals: uncertainty relations and efficient recovery. IEEE T. Signal Process. 58, 3042–3054 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fornasier, M., Rauhut, H.: Recovery algorithms for vector-valued data with joint sparsity constraints. SIAM J. Numer. Anal. 46, 577–613 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gfrerer, H.: First order and second order characterizations of metric subregularity and calmness of constraint set mappings. SIAM J. Optim. 21, 1439–1474 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gfrerer, H., Outrata, J.V.: On computation of generalized derivatives of the normal-cone mapping and their applications. Math. Oper. Res. 41, 1535–1556 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gfrerer, H., Outrata, J.V.: On Lipschitzian properties of implicit multifunctions. SIAM J. Optim. 26, 2160–2189 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Henrion, R., Jourani, R., Outrata, J.: On the calmness of a class of multifunctions. SIAM J. Optim. 13, 603–618 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Henrion, R., Outrata, J.: A subdifferential condition for calmness of multifunctions. J. Math. Anal. Appl. 258, 110–130 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Henrion, R., Outrata, J.: Calmness of constraint systems with applications. Math. Program. 104, 437–464 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ioffe, A.D.: Necessary and sufficient conditions for a local minimum. 1: a reduction theorem and first order conditions. SIAM J. Control Optim. 17, 245–250 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ioffe, A.D., Outrata, J.V.: On metric and calmness qualification conditions in subdifferential calculus. Set-Valued Anal. 16, 199–227 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. King, A.J., Rockafellar, R.T.: Sensitivity analysis for nonsmooth generalized equations. Math. Program. 55, 193–212 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Klatte, D., Kummer, B.: Constrained minima and Lipschitizan penalties in metric spaces. SIAM J. Optim. 13, 619–633 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kloft, M., Brefeld, U., Sonnenburg, S., Zien, A.: \(\ell _p\)-norm multiple kernel learning. J. Mach. Learn. Res. 12, 953–997 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Levy, A.B.: Solution sensitivity from general principles. SIAM J. Control Optim. 40, 1–38 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lewis, A.S.: The convex analysis of unitarily invariant matrix functions. J. Convex Anal. 2, 173–183 (1995)

    MathSciNet  MATH  Google Scholar 

  23. Li, W., Singer, I.: Global error bounds for convex multifunctions and applications. Math. Oper. Res. 23, 443–462 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pang, J.S.: Error bounds in mathematical programming. Math. Program. 79, 299–332 (1997)

    MathSciNet  MATH  Google Scholar 

  25. Robinson, S.M.: Some continuity properties of polyhedral multifunctions. Math. Program. 14, 206–214 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  27. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  28. Song, W.: Calmness and error bounds for convex constraint systems. SIAM J. Optim. 17, 353–371 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tseng, P., Yun, S.W.: A coordinate gradient descent method for nonsmooth separable minimization. Math. Program. 117, 387–423 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zheng, X.Y., Ng, K.F.: Metric subregularity and constraint qualifications for convex generalized equations in Banach spaces. SIAM J. Optim. 18, 437–460 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhou, J.C., Chen, J.S.: Properties of circular cone and spectral factorization associated with circular cone. J. Nonlinear Convex Anal. 14, 807–816 (2013)

    MathSciNet  MATH  Google Scholar 

  32. Zhou, Z.R.: Error bounds for structured convex programming: theory and applications. Ph.D. thesis, The Chinese University of Hong Kong (2015)

  33. Zhou, Z.R., So, A.M.C.: A unified approach to error bounds for structured convex optimization problems. Math. Program. 165, 689–728 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere thanks to anonymous referees for valuable suggestions and comments for the paper. The research of S. H. Pan was supported by the National Natural Science Foundation of China under Project No. 11571120 and the Natural Science Foundation of Guangdong Province under Project No. 2015A030313214, and S. J. Bi was supported by the National Natural Science Foundation of China under Project Nos. 11701186 and 11561015, and the Natural Science Foundation of Guangdong Province under Project No. 2017A030310418, and the Natural Science Foundation of Guangxi Province under Project No. 2016GXNSFFA380009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shujun Bi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this part, we shall establish the calmness of the subdifferential mappings of the vector and matrix \(\ell _p\) norms with \(p\in \{1\}\cup [2,+\infty ]\). The following lemma is required which follows directly by the convexity of \(\phi (t)=t^{\tau } (\tau \ge 1)\) for \(t\ge 0\).

Lemma 3

For any given \(a,b\in \mathbb {R}_{+}\) and \(\tau \ge 1\), the following inequality holds:

$$\begin{aligned} |a^\tau -b^\tau |\le \tau \max (a^{\tau -1},b^{\tau -1})|a-b|. \end{aligned}$$

If in addition \(a,b\in [0,1]\), the inequality can be simplified as \(|a^\tau -b^\tau |\le \tau |a-b|\).

Proposition 1

Suppose that \(p\in \{1\}\cup [2,+\infty ]\). The following statements hold.

  1. (i)

    \(\partial f_p\) is calm at any \(\widehat{x}\in \mathbb {R}^n\) for any \(\widehat{y}\in \partial f_p(\widehat{x})\);

  2. (ii)

    \(\partial F_p\) is calm at any \(\widehat{X}\in \mathbb {R}^{n\times m}\) for any \(\widehat{W}\in \partial f_p(\widehat{X})\).

Proof

(i) By the remarks after Definition 2, it suffices to consider \(p\in [2,+\infty )\). Fix an arbitrary \(\widehat{x}\in \mathbb {R}^n\) and an arbitrary \(\widehat{y}\in \partial f_p(\widehat{x})\). The calmness of \(\partial f_p\) at \(\widehat{x}\) for \(\widehat{y}\) requires the existence of \(\kappa >0\) along with \(\varepsilon >0\) and \(\delta >0\) such that

$$\begin{aligned} \partial f_p(x)\cap \mathbb {B}(\widehat{y},\delta ) \subset \partial f_p(\widehat{x})+\kappa \Vert x-\widehat{x}\Vert \mathbb {B}_{\mathbb {R}^n} \quad \mathrm{for\ all}\ x\in \mathbb {B}(\widehat{x},\varepsilon ). \end{aligned}$$
(25)

Recall that the subdifferential mapping of \(f_p\) for \(p\in (1,+\infty )\) has the form of

$$\begin{aligned} \partial f_p(x)=\left\{ \begin{array}{ll} \big \{{\varXi _p(x)}/{\Vert x\Vert _p^{p-1}}\big \} &{}\quad \mathrm{if}\ x\ne 0;\\ \{w\in \mathbb {R}^n: \Vert w\Vert _q\le 1\} &{}\quad \mathrm{if}\ x=0 \end{array}\right. \end{aligned}$$
(26)

For any given \(x\in \mathbb {R}^n\), write \(J(x):=\{i\in \{1,\ldots ,n\}: x_i\ne 0\}\) and define \(J_0(x):=\{i\in J(x): \widehat{y}_i=0\}\), \(J_{+}(x):=\{i\in J(x)\backslash J_0(x): \mathrm{sign}(x_i)=\mathrm{sign}(\widehat{y}_i)\}\) and \(J_{-}(x):=J(x)\backslash (J_0(x)\cup J_{+}(x))\). We proceed the arguments by two cases.

Case 1\(\widehat{x}=0\). Fix an arbitrary \(\varepsilon >0\) and an arbitrary \(\delta >0\). Let x be an arbitrary point from \(\mathbb {B}(\widehat{x},\varepsilon )\). By Eq. (26), it is immediate to check that

$$\begin{aligned} \partial f_p(x)\subseteq \{w\in \mathbb {R}^n: \Vert w\Vert _q\le 1\} =\partial f_p(\widehat{x}), \end{aligned}$$

which implies the inclusion in (25) holds for any \(\kappa >0\). This means that any \(\kappa >0\) along with any \(\varepsilon >0\) and \(\delta >0\) satisfies the requirement of (25).

Case 2\(\widehat{x}\ne 0\). Since \(\lim _{z\rightarrow \widehat{x}}\Vert z\Vert _p=\Vert \widehat{x}\Vert _p>0\), there is \(\widehat{\varepsilon }\in (0,1)\) such that

$$\begin{aligned} 0<\frac{1}{2}\Vert \widehat{x}\Vert _p\le \Vert z\Vert _p\quad \ \mathrm{for\ all}\ z\in \mathbb {B}(\widehat{x},\widehat{\varepsilon }). \end{aligned}$$
(27)

Write \(\gamma :={\displaystyle \min \nolimits _{z\in \mathbb {B}(\widehat{x},\widehat{\varepsilon })}}\Vert z\Vert _p\). Clearly, \(\gamma >0\). Let \(\delta :={\displaystyle \max _{z\in \mathbb {B}(\widehat{x},\widehat{\varepsilon })}\max _{y\in \partial f_p(z)}}\Vert y-\widehat{y}\Vert +1\). Fix an arbitrary \(x\in \mathbb {B}(\widehat{x},\widehat{\varepsilon })\). Take an arbitrary \(y\in \partial f_p(x)\cap \mathbb {B}(\widehat{y},\delta )\). From (26),

$$\begin{aligned} \Vert y-\widehat{y}\Vert ^2&=\sum _{i:\,x_i=0}\frac{|\widehat{x}_i|^{2p-2}}{\Vert \widehat{x}\Vert _p^{2p-2}} +\sum _{i\in J_{+}(x)}\bigg |\frac{|x_i|^{p-1}}{\Vert x\Vert _p^{p-1}}-\frac{|\widehat{x}_i|^{p-1}}{\Vert \widehat{x}\Vert _p^{p-1}}\bigg |^2\nonumber \\&\quad +\sum _{i\in J_{-}(x)}\bigg [\frac{|\widehat{x}_i|^{p-1}}{\Vert \widehat{x}\Vert _p^{p-1}}+\frac{|x_i|^{p-1}}{\Vert x\Vert _p^{p-1}}\bigg ]^2 +\sum _{i\in J_0(x)}\frac{|x_i|^{2p-2}}{\Vert x\Vert _p^{2p-2}}. \end{aligned}$$
(28)

For the second summand on the right hand side of (28), by Lemma 3 we have

$$\begin{aligned} \sum _{i\in J_{+}(x)} \bigg |\frac{|x_i|^{p-1}}{\Vert x\Vert _p^{p-1}}-\frac{|\widehat{x}_i|^{p-1}}{\Vert \widehat{x}\Vert _p^{p-1}}\bigg |^2 \le (p-1)^2\sum _{i\in J_{+}(x)}\bigg |\frac{|x_i|}{\Vert x\Vert _p}-\frac{|\widehat{x}_i|}{\Vert \widehat{x}\Vert _p}\bigg |^2. \end{aligned}$$
(29)

For each \(i\in J_{+}(x)\), let \(h_i(z):=|z_i|/\Vert z\Vert _p\) for \(z\in \mathbb {B}(\widehat{x},\widehat{\varepsilon })\). Since \(\widehat{x}\ne 0\) and \(\widehat{y}\in \partial f_p(\widehat{x})\), clearly, \(\widehat{x}_i\ne 0\) for \(i\in J_{+}(x)\). This means that each \(h_i\) is continuously differentiable at \(\widehat{x}\), and hence is continuously differentiable over \(\mathbb {B}(\widehat{x},\widehat{\varepsilon })\) (making reduction on \(\widehat{\varepsilon }\) if necessary). From the mean-valued theorem, there exists \(\widetilde{x}\) in the segment between x and \(\widehat{x}\) such that

$$\begin{aligned} |h_i(x)-h_i(\widehat{x})|&=\left| \frac{\mathrm{sign}(\widetilde{x}_i)}{\Vert \widetilde{x}\Vert _p}(x_i-\widehat{x}_i) -\frac{|\widetilde{x}_i|\langle \varXi _p(\widetilde{x}),x-\widehat{x}\rangle }{\Vert \widetilde{x}\Vert _p^{p+1}}\right| \\&\le \frac{2}{\Vert \widehat{x}\Vert _p}|x_i-\widehat{x}_i| +\frac{2}{\Vert \widehat{x}\Vert _p}\Vert x-\widehat{x}\Vert \le \frac{4}{\Vert \widehat{x}\Vert _p}\Vert x-\widehat{x}\Vert \end{aligned}$$

where the second inequality is by (27) and the expression of \(\varXi _p(\cdot )\). By (29),

$$\begin{aligned} \sum _{i\in J_{+}(x)} \left| \frac{|x_i|^{p-1}}{\Vert x\Vert _p^{p-1}}-\frac{|\widehat{x}_i|^{p-1}}{\Vert \widehat{x}\Vert _p^{p-1}}\right| ^2\le & {} (p-1)^2\sum _{i\in J_{+}(x)}\big |h_i(x)-h_i(\widehat{x})\big |^2 \\\le & {} \frac{16n(p-1)^2}{\Vert \widehat{x}\Vert _p^2}\Vert x-\widehat{x}\Vert ^2. \end{aligned}$$

For the rest three summands on the right hand side of (28), by virtue of (27),

$$\begin{aligned}&\sum _{i:\,x_i=0}\frac{|\widehat{x}_i|^{2p-2}}{\Vert \widehat{x}\Vert _p^{2p-2}} \le \frac{1}{\Vert \widehat{x}\Vert _p^2}\sum _{i:\,x_i=0}|\widehat{x}_i|^2; \sum _{i\in J_{0}(x)}\frac{|x_i|^{2p-2}}{\Vert x\Vert _p^{2p-2}} \le \sum _{i\in J_{0}(x)}\frac{|x_i|^{2}}{\Vert x\Vert _p^{2}} \le \frac{1}{\gamma ^2}\sum _{i\in J_{0}(x)}|x_i|^2;\\&\sum _{i\in J_{-}(x)}\left[ \frac{|\widehat{x}_i|^{p-1}}{\Vert \widehat{x}\Vert _p^{p-1}}+\frac{|x_i|^{p-1}}{\Vert x\Vert _p^{p-1}}\right] ^2 \le \sum _{i\in J_{-}(x)}\left[ \frac{|\widehat{x}_i|}{\Vert \widehat{x}\Vert _p}+\frac{|x_i|}{\Vert x\Vert _p}\right] ^2\\&\qquad \le \frac{1}{\min (\gamma ^2,\Vert \widehat{x}\Vert _p^2)}\sum _{i\in J_{-}(x)}\big ||x_i|+|\widehat{x}_i|\big |^2. \end{aligned}$$

By combining the last three equations with (28), it is not difficult to obtain

$$\begin{aligned} \Vert y-\widehat{y}\Vert ^2\le \frac{32n(p-1)^2}{\min (\gamma ^2,\Vert \widehat{x}\Vert _p^2)}\Vert x-\widehat{x}\Vert ^2 \le \frac{32n(p-1)^2}{\gamma ^2}\Vert x-\widehat{x}\Vert ^2, \end{aligned}$$

which implies that \(\mathrm{dist}(y,\partial f_p(\widehat{x}))\le \Vert y-\widehat{y}\Vert \le \frac{4\sqrt{2n}(p-1)}{\gamma }\Vert x-\widehat{x}\Vert \). By the arbitrariness of y in \(\partial f_p(x)\cap \mathbb {B}(\widehat{y},\delta )\), (25) holds for \(\kappa =\frac{4\sqrt{2n}(p-1)}{\gamma }\) and \(\widehat{\varepsilon }\).

(ii) From \((\widehat{X},\widehat{W})\in \mathrm{gph}\,\partial F_{p}\) and [22, Corollary 2.5], \(\sigma (\widehat{W})\in \partial f_p(\sigma (\widehat{X}))\). By [22, Lemma 2.3(b)], the conjugate \(f_p^*\) of \(f_p\) is absolutely symmetric, closed and convex. By the von Neumann’s trace inequality, it is easy to verify that \(F_p^*(X)=f_p^*(\sigma (X))\) for \(X\in \mathbb {R}^{n\times m}\), and hence \(F_p^*\) is closed and convex by [22, Corollary 2.5]. Recall that \(\partial f_p^*=(\partial f_p)^{-1}\). By the first part, \(\partial f_p^*\) is metrically subregular at \(\sigma (\widehat{W})\) for \(\sigma (\widehat{X})\). Using [5, Proposition 14] again, we conclude that \(\partial F_p^*=(\partial F_p)^{-1}\) is metrically subregular at \(\widehat{W}\) for \(\widehat{X}\). Consequently, the mapping \(\partial F_p\) is calm at \(\widehat{X}\) for \(\widehat{W}\) when \(p\in \{1\}\cup [2,+\infty ]\)\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Pan, S. & Bi, S. Metric subregularity and/or calmness of the normal cone mapping to the p-order conic constraint system. Optim Lett 13, 1095–1110 (2019). https://doi.org/10.1007/s11590-018-1373-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-018-1373-4

Keywords

Navigation