Skip to main content
Log in

Absolute value equations with uncertain data

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

Absolute value equations (AVE) provide a useful tool for optimization as they subsume many mathematical programming problems. However, in some applications, it is difficult to determine the exact values of the problem data and there may be some certain errors. Finding a solution for AVE based on erroneous data using existing approaches might yield a meaningless solution. In this paper, robust optimization, which represents errors in the problem data, is used. We prove that a robust solution can be obtained by solving a robust counterpart problem, which is equivalent to a second order cone program. The results also show that robust solutions can significantly improve the performance of solutions, especially when the size of errors in the problem is large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Program. 95(1), 3–51 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms. Wiley, Hoboken (2013)

    MATH  Google Scholar 

  3. Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Math. Oper. Res. 23(4), 769–805 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ben-Tal, A., Nemirovski, A.: Robust solutions of uncertain linear programs. Oper. Res. Lett. 25(1), 1–13 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications, vol. 2. SIAM, Philadelphia (2001)

    Book  MATH  Google Scholar 

  6. Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52(1), 35–53 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cottle, R.W., Dantzig, G.B.: Complementary pivot theory of mathematical programming. Linear Algebra Appl. 1(1), 103–125 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem, vol. 60. SIAM, Philadelphia (1992)

    MATH  Google Scholar 

  9. Ketabchi, S., Moosaei, H.: An efficient method for optimal correcting of absolute value equations by minimal changes in the right hand side. Comput. Math. Appl. 64(6), 1882–1885 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ketabchi, S., Moosaei, H.: Minimum norm solution to the absolute value equation in the convex case. J. Optim. Theory. Appl. 154(3), 1080–1087 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming. Linear Algebra Appl. 284(1), 193–228 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mangasarian, O.: Absolute value equation solution via concave minimization. Optim. Lett. 1(1), 3–8 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mangasarian, O.: A generalized newton method for absolute value equations. Optim. Lett. 3(1), 101–108 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mangasarian, O., Meyer, R.: Absolute value equations. Linear Algebra Appl. 419(2), 359–367 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mangasarian, O.L.: Primal-dual bilinear programming solution of the absolute value equation. Optim. Lett. 6(7), 1527–1533 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mangasarian, O.L.: Absolute value equation solution via dual complementarity. Optim. Lett. 7(4), 625–630 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mangasarian, O.L.: A hybrid algorithm for solving the absolute value equation. Optim. Lett. 9(7), 1469–1474 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Moosaei, H., Ketabchi, S., Noor, M., Iqbal, J., Hooshyarbakhsh, V.: Some techniques for solving absolute value equations. Appl. Math. Comput. 268, 696–705 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Noor, M.A., Iqbal, J., Al-Said, E.: Residual iterative method for solving absolute value equations. Abst. Appl. Anal. 2012, 1–9 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Pardalos, P.M., Ketabchi, S., Moosaei, H.: Minimum norm solution to the positive semidefinite linear complementarity problem. Optimization 63(3), 359–369 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Prokopyev, O.: On equivalent reformulations for absolute value equations. Comput. Optim. Appl. 44(3), 363–372 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rohn, J.: An algorithm for solving the absolute value equation. Electron. J. Linear Algebra 18(589–599), 5 (2009)

    MathSciNet  MATH  Google Scholar 

  23. Rohn, J.: On unique solvability of the absolute value equation. Optim. Lett. 3(4), 603–606 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rohn, J.: An algorithm for computing all solutions of an absolute value equation. Optim. Lett. 6(5), 851–856 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rohn, J., Hooshyarbakhsh, V., Farhadsefat, R.: An iterative method for solving absolute value equations and sufficient conditions for unique solvability. Optim. Lett. 8(1), 35–44 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Salkuyeh, D.K.: The picard-hss iteration method for absolute value equations. Optim. Lett. 8(8), 2191–2202 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Soyster, A.: Convex programming with set-inclusive constraints and applications to inexact linear programming. Oper. Res. 21(5), 1154–1157 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, X., Fan, N., Pardalos, P.M.: Robust chance-constrained support vector machines with second-order moment information. Ann. Oper. Res. 263(1–2), 45–68 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Wang, X., Pardalos, P.M.: A survey of support vector machines with uncertainties. Ann. Data Sci. 1(3–4), 293–309 (2014)

    Article  Google Scholar 

  30. Xanthopoulos, P., Pardalos, P.M., Trafalis, T.B.: Robust Data Mining. Springer, Berlin (2012)

    MATH  Google Scholar 

Download references

Acknowledgements

M. A. Raayatpanah was partially supported by a grant from Kharazmi University. P.M. Pardalos was partially supported by the Paul and Heidi Brown Preeminent Professorship at ISE, University of Florida.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Raayatpanah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raayatpanah, M.A., Moosaei, H. & Pardalos, P.M. Absolute value equations with uncertain data. Optim Lett 14, 1145–1156 (2020). https://doi.org/10.1007/s11590-019-01385-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-019-01385-1

Keywords

Navigation