Skip to main content
Log in

A strong convergence theorem for Tseng’s extragradient method for solving variational inequality problems

  • Original paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this paper, we introduce a new algorithm for solving variational inequality problems with monotone and Lipschitz-continuous mappings in real Hilbert spaces. Our algorithm requires only to compute one projection onto the feasible set per iteration. We prove under certain mild assumptions, a strong convergence theorem for the proposed algorithm to a solution of a variational inequality problem. Finally, we give some numerical experiments illustrating the performance of the proposed algorithm for variational inequality problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alvarez, F., Attouch, H.: An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping. Set-Valued Anal. 9, 3–11 (2001)

    Article  MathSciNet  Google Scholar 

  2. Aubin, J.P., Ekeland, I.: Applied Nonlinear Analysis. Wiley, New York (1984)

    MATH  Google Scholar 

  3. Baiocchi, C., Capelo, A.: Variational and Quasivariational Inequalities; Applications to Free Boundary Problems. Wiley, New York (1984)

    MATH  Google Scholar 

  4. Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 148, 318–335 (2011)

    Article  MathSciNet  Google Scholar 

  5. Censor, Y., Gibali, A., Reich, S.: Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space. Optim. Methods Softw. 26, 827–845 (2011)

    Article  MathSciNet  Google Scholar 

  6. Censor, Y., Gibali, A., Reich, S.: Extensions of Korpelevich’s extragradient method for the variational inequality problem in Euclidean space. Optimization 61, 1119–1132 (2012)

    Article  MathSciNet  Google Scholar 

  7. Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algorithms 59, 301–323 (2012)

    Article  MathSciNet  Google Scholar 

  8. Ceng, L.C., Hadjisavvas, N., Wong, N.C.: Strong convergence theorem by a hybrid extragradient-like approximation method for variational inequalities and fixed point problems. J. Glob. Optim. 46, 635–646 (2010)

    Article  MathSciNet  Google Scholar 

  9. Dong, Q.L., Cho, Y.J., Zhong, L.L., Rassias, Th.M: Inertial projection and contraction algorithms for variational inequalities. J. Glob. Optim. 70, 687–704 (2018)

  10. Dong, Q.L., Yuan, H.B., Cho, Y.J., Rassias, Th.M: Modified inertial Mann algorithm and inertial \(CQ\)-algorithm for nonexpansive mappings. Optim. Lett. 12, 87–102 (2018)

  11. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Series in Operations Research, vol. I. Springer, New York (2003)

    MATH  Google Scholar 

  12. Gibali, A., Reich, S., Zalas, R.: Outer approximation methods for solving variational inequalities in Hilbert space. Optimization 66, 417–437 (2017)

    Article  MathSciNet  Google Scholar 

  13. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York (1984)

    MATH  Google Scholar 

  14. Harker, P.T., Pang, J.S.: A damped-Newton method for the linear complementarity problem. Lect. Appl. Math. 26, 265–284 (1990)

    MathSciNet  MATH  Google Scholar 

  15. Kimura, Y., Saejung, S.: Strong convergence for a common fixed point of two different generalizations of cutter operators. Linear Nonlinear Anal. 1, 53–65 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980)

    MATH  Google Scholar 

  17. Kraikaew, R., Saejung, S.: Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Hilbert spaces. J. Optim. Theory Appl. 163, 399–412 (2014)

    Article  MathSciNet  Google Scholar 

  18. Konnov, I.V.: Combined Relaxation Methods for Variational Inequalities. Springer, Berlin (2001)

    Book  Google Scholar 

  19. Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Ekon. Mat. Metody 12, 747–756 (1976)

    MathSciNet  MATH  Google Scholar 

  20. Kopecká, E., Reich, S.: Approximating fixed points in the Hilbert ball. J. Nonlinear Convex Anal. 15, 819–829 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Maingé, P.E.: Inertial iterative process for fixed points of certain quasi-nonexpansive mappings. Set-Valued Anal. 15, 67–79 (2007)

    Article  MathSciNet  Google Scholar 

  22. Maingé, P.E.: A hybrid extragradient-viscosity method for monotone operators and fixed point problems. SIAM J. Control Optim. 47, 1499–1515 (2008)

    Article  MathSciNet  Google Scholar 

  23. Malitsky, Y.V., Semenov, V.V.: A hybrid method without extrapolation step for solving variational inequality problems. J. Glob. Optim. 61, 193–202 (2015)

    Article  MathSciNet  Google Scholar 

  24. Malitsky, Y.V.: Projected reflected gradient methods for monotone variational inequalities. SIAM J. Optim. 25, 502–520 (2015)

    Article  MathSciNet  Google Scholar 

  25. Moudafi, A.: Viscosity approximation methods for fixed points problems. J. Math. Anal. Appl. 241, 46–55 (2000)

    Article  MathSciNet  Google Scholar 

  26. Nadezhkina, N., Takahashi, W.: Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings. J. Optim. Theory Appl. 128, 191–201 (2006)

    Article  MathSciNet  Google Scholar 

  27. Polyak, B.T.: Some methods of speeding up the convergence of iterarive methods. Zh. Vychisl. Mat. Mat. Fiz. 4, 1–17 (1964)

    Google Scholar 

  28. Saejung, S., Yotkaew, P.: Approximation of zeros of inverse strongly monotone operators in Banach spaces. Nonlinear Anal. 75, 742–750 (2012)

    Article  MathSciNet  Google Scholar 

  29. Suantai, S., Pholasa, N., Cholamjiak, P.: The modified inertial relaxed CQ algorithm for solving the split feasibility problems. J. Ind. Manag. Optim. 13, 1–21 (2018). https://doi.org/10.3934/jimo.2018023

    Article  MathSciNet  MATH  Google Scholar 

  30. Thong, D.V., Hieu, D.V.: Weak and strong convergence theorems for variational inequality problems. Numer. Algorithms 78, 1045–1060 (2018)

    Article  MathSciNet  Google Scholar 

  31. Thong, D.V., Hieu, D.V.: Modified subgradient extragradient algorithms for variational inequality problems and fixed point problems. Optimization 67, 83–102 (2018)

    Article  MathSciNet  Google Scholar 

  32. Thong, D.V., Hieu, D.V.: Modified subgradient extragradient method for inequality variational problems. Numer. Algorithms 79, 597–610 (2018)

    Article  MathSciNet  Google Scholar 

  33. Thong, D.V., Hieu, D.V.: Inertial extragradient algorithms for strongly pseudomonotone variational inequalities. J. Comput. Appl. Math. 341, 80–98 (2018)

    Article  MathSciNet  Google Scholar 

  34. Thong, D.V., Hieu, D.V.: New extragradient methods for solving variational inequality problems and fixed point problems. J. Fixed Point Theory Appl. 20, 129 (2018). https://doi.org/10.1007/s11784-018-0610-x

    Article  MathSciNet  MATH  Google Scholar 

  35. Thong, D.V., Hieu, D.V.: Inertial subgradient extragradient algorithms with line-search process for solving variational inequality problems and fixed point problems. Numer. Algorithms (2018). https://doi.org/10.1007/s11075-018-0527-x

    Article  MATH  Google Scholar 

  36. Tseng, P.: A modified forward–backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38, 431–446 (2000)

    Article  MathSciNet  Google Scholar 

  37. Wang, F.H., Xu, H.K.: Weak and strong convergence theorems for variational inequality and fixed point problems with Tseng’s extragradient method. Taiwan. J. Math. 16, 1125–1136 (2012)

    Article  MathSciNet  Google Scholar 

  38. Yao, Y., Marino, G., Muglia, L.: A modified Korpelevich’s method convergent to the minimum-norm solution of a variational inequality. Optimization 63, 559–569 (2014)

    Article  MathSciNet  Google Scholar 

  39. Wang, Y.M., Xiao, Y.B., Wang, X., Cho, Y.J.: Equivalence of well-posedness between systems of hemivariational inequalities and inclusion problems. J. Nonlinear Sci. Appl. 9, 1178–1192 (2016)

    Article  MathSciNet  Google Scholar 

  40. Xiao, Y.B., Huang, N.J., Cho, Y.J.: A class of generalized evolution variational inequalities in Banach space. Appl. Math. Lett. 25, 914–920 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to two anonymous reviewers for their comments on the manuscript which helped us very much in improving and presenting the original version of this paper. This paper was completed when the first two authors were visiting the Vietnam Institute for Advance Study in Mathematics (VIASM) and they thank the VIASM for financial support and hospitality and the second named author is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No.101.01-2017.08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeol Je Cho.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thong, D.V., Vinh, N.T. & Cho, Y.J. A strong convergence theorem for Tseng’s extragradient method for solving variational inequality problems. Optim Lett 14, 1157–1175 (2020). https://doi.org/10.1007/s11590-019-01391-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-019-01391-3

Keywords

Navigation